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ABSTRACT

Let k be any field and G a finite group. Given a cohomology class a €
H?(G,k*), where G acts trivially on k*, one constructs the twisted group
algebra k*G. Unlike the group algebra kG, the twisted group algebra may
be a division algebra (e.g. symbol algebras, where G & Z,, X Z,). This
paper has two main results: First we prove that if D = k®G is a division
algebra central over k (equivalently, D has a projective k-basis) then G is
nilpotent and G', the commutator subgroup of G, is cyclic. Next we show
that unless char(k) = 0 and v/~1 ¢ k, the division algebra D = k*G is
a product of cyclic algebras. Furthermore, if Dy is a p-primary factor of
D, then D, is a product of cyclic algebras where all but possibly one are
symbol algebras. If char(k) = 0 and +/—1 ¢ k, the same result holds for
Dp, p odd. If p = 2 we show that D; is a product of quaternion algebras
with (possibly) a crossed product algebra (L/k, 8), Gal(L/k) & Za X Zan.

Received January 6, 1999

173



174 E. ALJADEFF AND D. HAILE Isr. J. Math.

0. Introduction

Let k be a field. Recall that a Schur algebra over & is a k-central simple algebra
which is a homomorphic image of a group algebra kG for some finite group G.
Equivalently a k-central simple algebra A is Schur over k if A*, the group of
units of A, contains a finite group (say ') that spans A as a k-vector space. Let
[A] € Br(k) be the class in the Brauer group of k£ which is represented by A and
let S{k) be the subgroup of Br(k) generated by (and in fact consisting of) classes
represented by Schur algebras. This is the Schur subgroup of Br(k). See [Y]. This
construction has a projective version which was introduced by Lorenz and Opolka
in 1978 ([LO]J). They considered twisted group algebras kG rather than group
algebras, where o € H?(G,k*) (k* with the trivial G-structure). A projective
Schur algebra over k is a k-central simple algebra which is a homomorphic
image of k%G for some finite group G and some o € H2(G, k*). It is not difficult
to see that a k-central simple algebra A is projective Schur if and only if A*
contains a subgroup I’ which spans A over k and is finite modulo the center (i.e.
| k*T'/k* | < oc). Clearly, a projective Schur algebra A determines an element,
[4], in Br(k) and we may consider the subgroup they generate in Br(k). This is
PS(k), the projective Schur group of the field k. For the structure of projective
Schur algebras and the projective Schur group see [LO], [NV], [AS2], [AS3]. The
special situation where a projective Schur algebra is a division algebra (projective
Schur division algebra) has been studied in [AS1] and [Sh]. The main result in
[AS1] is that every projective Schur division algebra is isomorphic to a “radical
abelian algebra” which is a special type of abelian crossed product (K/k, H, a).
The main tool in the proof was Amitsur’s classification of finite groups contained
in the group of units of division algebras (see [A]). In [Sh] the focus is on the type
of finite groups of the form k*I'/k* where ' C D*, D being an arbitrary division
algebra over k. Equivalently, the groups k*I'/k* are the finite groups that occur
as groups of inner automorphisms of D.

One of the main motivations for introducing projective Schur algebras and the
projective Schur group is that symbol algebras are examples. Recall that a k-

central simple algebra B of dimension n?

is a symbol algebra if k£ contains ¢,
(a primitive n-th root of unity) and B is generated by elements z,y that satisfy
" € k*,y" € k*,yz = (u,zy. Let T be the subgroup in B* generated by z
and y. It is clear that k*T'/k* (and by abuse of notation I'/k*) & Z, x Z,.
Furthermore, I’ spans B as a vector space over k and so B is a projective Schur
algebra. In fact it is evident from the coustruction that such an algebra is not

only a homomorphic image of, but isomorphic to, a twisted group algebra over
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k. In this situation we will say that the algebra B has a projective basis. That
is, we say the algebra B has a projective basis if it contains a basis © over k,
consisting of invertible elements and such that k*©/k* is a subgroup of B*/k*.

As mentioned above, symbol algebras have projective bases but, as we'll see,
these are not the only examples. In particular, in section 2 we exhibit a twisted
group division algebra D over a field k, where exp(D) = p", r > 2 but k contains
no primitive p" roots of unity.

The object of this paper is to analyze division algebras over k which have a
projective basis or equivalently division algebras over k& which are k-isomorphic
to a twisted group algebra kG for some finite group G. Note that the order of
G must be an exact square. Here are the main results:

THEOREM 1: If k*G is a division algebra with center k then the commutator
subgroup of G is cyclic.

Remarks: (1) If Char(k) = p > 0, the result is in [AS1], Main Lemma.
(2) The group G is a finite group of inner automorphisms of D = k*G and
hence it must satisfy the conditions in [Sh].

THEOREM 2: If k®G is a division algebra with center k then G is nilpotent.
Furthermore, if P, P,, . .., Py, are the Sylow-p subgroups of G and ifa; = resgi o;
fori=1,...,m then k*G 2 k*" P, @ - - - ® k*™ P,,.

This theorem reduces the analysis to p-groups. In that case we have the
following results:

THEOREM 3: If G is a p-group and D = k®G is a division algebra with center k
and (p, k) satisfies one of the following conditions:

(1) pis odd, or

(2) p=2and V-1€k,
then D is the tensor product of cyclic algebras (with projective bases) where all
but possibly one are symbol algebras.

The remaining cases are considered in the following resulit.

THEOREM 4: Let p = 2 and assume v—1 ¢ k. If G is a 2-group and D = k*G
is a division algebra with center k. Then:
(1) If char(k) > 0, then D =2 D, ® --- ® D, where all D;,; i = 1,...,n are
quaternion algebras.
(2) Ifchar(k) =0, then either
(i) D= D, ®y---® D, where all D; are quaternion algebras, or
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(ii) D = D1 ®g---®D,, where D;,i=1,...,n—1 are quaternion algebras
and D,, is isomorphic to a crossed product (K/k,H = Gal(K/k))
where H =2 Z5r x Z3 and r > 1. Furthermore, D, has a projective
basis as well.

In section 1 we analyze the structure of the group G whenever kG is a division
algebra k-central and prove Theorems 1 and 2. In sections 2 and 3 we analyze
the algebras in the case where G is a p-group and prove Theorems 3 and 4.

1. The structure of G

Let D = k“G be a twisted group division algebra with center k and let f: GxG —
k* be a 2-cocycle representing . Consider the group extension

a=[fll1=k*>TDHG-1

Clearly the group I' is contained in the units of D and it spans D as a vector
space over k. We often write D = k(T'). For every ¢ € G we choose an element
u, in T such that m(u,) = 0. We call I' the set of group-like elements in
D*. Furthermore, we say that an element in 7~!(o) is of weight 0 € G. If H
is a subgroup of G, we let k®H denote the twisted group algebra obtained by
restricting o to H.

We start with a lemma which will be used several times in the paper.

LEMMA A: Let k*G be a twisted group division algebra with center k. Let N
be a normal subgroup of G and let A = k®N be the corresponding subalgebra
in k®G. Then the center K = Z(A) is a Galois extension of k. Furthermore, if
N > G, then K/k is abelian.

Proof: We observe that group-like elements u,, 0 € G act on A by conjugation
and therefore they act on its center K. Clearly, this action induces an action of
G/N on K. Finally, K¢/N = k since K¢/ C Z(k°G) = k. ]

Observe that the group I is center by finite, so by a theorem of Schur the
commutator subgroup I’ is finite. It is easy to see that the weights of the elements
in I are in G’ and, moreover, (I' /k* =) k*T"/k* = G'. 1t follows that kT,
the subalgebra generated by I, is a division algebra isomorphic to the twisted
group algebra kG'. Note that since I is finite, the cohomology class res(a) €
H 2(G’I,k“) can be represented by a 2-cocycle fo which takes finite values in k*,
that is for every o,7 in G, fo(o,7) € u C k*, where p denotes the group of
roots of unity in k. We say that a cohomology class is of finite type if it has
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a representative which takes finite values in k*. We remark that the center of
k(T'") is a field K which may be a proper extension of k.

We want to analyze k(I") and so we first consider twisted group algebras kG
where the class a is of finite type and where the center may be a proper extension
of k.

THEOREM 1.1: Let k®G be a twisted group division algebra and assume « is of
finite type. Then:
(1) Ifp # 2, the sylow p-subgroup of G is cyclic.
(2) The sylow-2 subgroup of G is isomorphic to a subgroup of the dihedral
group Djn, some n.

Let us postpone the proof of the theorem and show that for a p-group G
satisfying (1) or (2) one can find a field k£ and a finite class a such that kG is a
division algebra.

It is not difficult to build an example with a cyclic p-group. For instance,
assume k contains (,r, a primitive p” root of unity, but does not contain (yr+1
where r > 1 if pis odd and r > 2 if p = 2. Consider the field extension K = k(z)
where 27" = (,-. Then one checks that K = k®G where G = Cpn cyclic of order
p"™ and that the class ¢ is finite. Note that if p = 2 and ¢ ¢ k* then the statement
above may be false (e.g. k = R the real numbers).

Next we build examples of twisted group algebras kG where G is isomorphic
to a subgroup of Do~ namely cyclic, Klein 4-group and dihedral. The cyclic case
was considered above and the Hamilton quaternions is an example for the Klein
4 group. So let us assume G & Dan, n > 3. Consider the group extension

a:1—>Z2=<q>—)Q2n+1—-)D2n-—>1

where Q,n+1 denotes the quaternion group of order 2"+, Clearly « is non-
split. Furthermore, « is non-split upon restriction to any non-trivial subgroup
of Dan. We specialize ¢ = —1 € Q (rationals) and build a twisted group algebra
D = Q*Dyn. We denote by I' < D the image of Qn+1 under this specialization.
Clearly « is of finite type. We claim D is a division algebra. In fact we are to
show that D is the quaternion algebra (—1, —1) over a certain field extension of
Q of degree 2"~2. Let < ¢ > be the unique maximal cyclic subgroup (of order
2"~1) of G and let 7 be an involution in G such that T = ¢!, Let u, and u,
be group-like elements in I' < D of weight o and 7, respectively. A straigtforward

calculation shows that the elements uy + u;uou;?, u + u,uu;l,. ., u?,"_a +
u,uﬁ"_au; ! are in the center of D. Moreover, by the definition of the 2-cocycle
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one checks that for 0 < i < 2"3, we have

w? +upurl =42+ \/2+ \/2+ 2+ V2 (i times)

_ — n—3 n—3 _ .
and L = k(us + urtouy?t, u2 + urulusl, o w2 +uul url) is a field

extension of degee 22 over k. On the other hand, (12" )% = u2 = —1 and

n— n—2 o s . . .
(¥ )u, = —u,(u2"") and so D is isomorphic to the Hamilton quaternions

(=1, —1) over the field L. Finally, L is a real field and so D is a division algebra.

We proceed to the proof of Theorem 1.1:

CASE 1: p s 2. We show that if P is a sylow p-subgroup of G, then P contains
no rank 2 elementary abelian group (Z, x Z,). This will imply that P is cyclic.
Assume the converse and so let P D Py & Z, x Z, generated by o and 7. As
usual u, ,u, are group-like elements in k*G of weights ¢ and 7, respectively.
The restriction of a to Py may be represented by the equations u? = a, u? = b,
usu, = (uru, and since o is a class of finite type we can assume that a, b, { are
roots of unty in . In particular, the subgroup of D* generated by u, and u, is
finite. From the equations above it follows that ¢ is a p-th root of unity.

Case 1.1: ( =1. Then K = k*Z, x Z, is commutative. By replacing u, and
u, by powers relatively prime to p, we may assume u, and u, are p-power roots
of unity. But then one of two is a power of the other. If u, = v, then writing
m = ps+r, where 0 < 7 < p, gives that u, is a £* multiple of 47, a contradiction.

CASE 1.2:  { = a primitive p-th root of unity. In this case k*Z, x Z,, is a symbol
algebra (a, b) where a and b are roots of unity. Replacing the algebra by a power
prime to p we may assume a and b are p-power roots of unity. But that forces
a = b = ¢, because otherwise a or b is a p-th power in k and so (a, b) is split. But
for p odd the symbol algebra ({, ¢) is split, so we have a contradiction.

This completes the proof of part (1) of Theorem 1.1.

CASE 2: p = 2. We need the following lemma.

LEMMA 1.2: Let G be a 2-group, k®G a division algebra where o is a class of
finite type. Then:

(i) G contains no elementary abelian group isomorphic to Z x Zy X Z,.

(i) G contains no group isomorphic to Za X Zy.
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(iii) G contains no group isomorphic to (s, the quaternion group of order 8.

Assuming the Lemma, part (2) of Theorem 1.1 now follows since a finite 2-
group not containing any of these 3 types of groups must be isomorphic to a
subgroup of Dy~ for some n. (See [AGO].)

Proof of Lemma 1.2: (i) Assume G contains Zy X Z; x Zy and let 0,7, be
generators. Let uo,ur, %, be group-like elements in k*G with weights o, 7,v
respectively. Since the class a is of finite type the following relations are satisfied:
u?

D=0 UglUr = Q1Url, Ugly = QaUplUg, Urthy, = (3Up Uy

where a, b, ¢ are roots of unity in k* and (1,(2,¢3 € {1, —1}. If one of the (’s (say
(1) is 1, we get that k* < o,7 > is a field. This yields a contradiction as in case
1.1 above. If {; = (; = {3 = —1 we consider the elements u,u, and u,. They
generate a field and again we get a contradiction.

(i) Assume o, 7 € G generate a subgroup & Z; x Zy. Then v =a, u? = band
u,u,; = Cu,u, where a,b,( are roots of unity in k. Observe that ¢ € {1,-1}, so
u, and u? generate a commutative subalgebra 2 k®Z; x Z, which is not possible.

(iii) To show that G contains no subgroup isomorphic to Qg, recall that M(Qs),
the multiplicator of Qg, vanishes. Applying the universal coefficient theorem for
Qs gives

0 — Ext}((Qs)as, k*) = H*(Qs, k*) — Hom(M(Qs),k*) =0~ 0

where (Qs)as = Qs/Qj is the abelianization of Qg and inf denotes the inflation
map induced by the natural map Qs — (@s)qes- It follows that every cohomology
class (regardless whether the class is finite or not) is trivial upon restriction to
the commutator subgroup Q; = Z(Qg) = Zz and therefore the twisted group
algebra k®G contains a non-trivial group algebra isomorphic to kZ;. This shows
that k*G is not a division algebra. This completes the proof of Lemma 1.2 and
also of Theorem 1.1. |

Remark 1.3: The argument above shows that if ¥*G is a twisted group division
algebra (where « is not necessarily of finite type) then the group G contains no
quaternion group of order 8. On the other hand, it is easy to see that if o is not
of finite type one can construct examples of twisted group division algebras kG
where G contains any given abelian group (e.g. products of symbol algebras).

We are now heading toward the proofs of Theorems 1 and 2 of the introduction.
Resuming our original notation we let D = k®G be a k-central division algebra
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(a arbitrary). Recall that the restriction of a to G'is of finite type so we can
invoke Theorem 1.1 and conclude that the sylow p-subgroups of G’ must be cyclic
in the odd case or a subgroup of a dihedral 2-group in the even case.

We begin with the following result.

PROPOSITION 1.4: Let D = k®G be as above.
(1) The double commutator G" is a 2-group.
(2) The sylow 2-subgroup of G is characteristic in G.

Proof:  First note that (2) follows from (1) for if G" is a 2-group, then G,
the sylow 2-subgroup of G, is normal in G'. This of course implies that G, is
characteristic in G and therefore characteristic in G. To prove (1) we show that
G"' NP = {1} for every sylow p # 2 subgroup P of G'. If p is an odd prime,
Theorem 1.1 says that P is cyclic and consequently M (G'),, < M(P) =0 where
Ay, denotes the p-primary component of the abelian group A. It follows that the
inflation map (in the universal coefficient theorem)

0 = ExtL((G)ap, k*)p S HX(G',k*), - Hom(M(G'), k"), =0 = 0

is an isomorphism. This means that the p-component of any cohomology class
o € H3(G',k*) is trivialon G and therefore trivial on G"'NP. On the other hand,
it is clear that the p’ component of a vanishes on G NP, so resg,,n pla) =0.
This shows that the group algebra k[G" N P] ¢ D, which is impossible unless
G'nP={1}. ]

We know Glz is either cyclic or the Klein group of order 4 or dihedral of order
2", n > 3. We will eventually show that G; is in fact cyclic. The previous
proposition allows us to eliminate the dihedral case:

COROLLARY 1.5: G; is not isomorphic to the dihedral group of order 2™, n > 3.

Proof: Assume G'2 ™ Don,n > 3. Let Cyn1 < G'Z be the unique cyclic subgroup
of order 27!, Clearly C3~-1 is characteristic in G; and by Proposition 1.4 it is
characteristic in G’ and in G. But Aut{Cy~-1) is abelian and so the map induced
by conjugation G — Aut{C;zn-1) factors through G/G'. This shows that the
action of G is trivial on Cyn-1, contradicting our assumption on G;. ]

PROPOSITION 1.6: If G, is cyclic, then G' is cyclic. If G, is isomorphic to the
Klein group, then we have the following:
(a) G =~ G; x C where C is cyclic of odd order. In particular G’ is abelian.
(b) The center of k*G' is the field K = k®C and k*G = (-1, -1)k.
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(c) 3 does not divide the order of G
(d) The field extension K [k is abelian of degree prime to 6.

Proof:  Assume G; cyclic. We then claim the sylow p-subgroups in G for
different primes p commute with each other. Indeed, take z,y € G  of orders
p* and ¢t respectively where p and ¢ are different primes. Consider the equality

1 = 2y where z € G, (by Proposition 1.4). We assume (w.Lo.g.) that g # 2.

Ty
Raising this equation to the g¢ power we get 1 = (zyz~!)7" = zz¥z¥" ... 29'~!
where z¥' = yizy~%. It follows that if the action of y on G, is trivial (and in
particular y centralizes z), z itself must be trivial (i.e. £ and y commute). But
we are assuming G; cyclic and so its automorphism group is a 2-group, so we
have proved the claim. By Proposition 1.4, G; is normal in G and by what we
have just proved it is central and the quotient group G /Z(G') is abelian. Hence
G is nilpotent and so, in fact, cyclic.

Now assume G’z = Z4 x Z3. Because the automorphism group of Z3 x Z, is S3,
the argument just given shows that every sylow p-subgroup commutes with every
sylow ¢-subgroup as long as p and ¢ are distinct and we are not in the situation
where one of two is 2 and the other is 3. In particular, it follows (just as above)
that G is abelian and has the desired decomposition unless some generator y
of a (cyclic) sylow 3-subgroup operates non-trivially (by conjugation) on G;,
so we may assume we are in that case. We will show that this case leads to a
contradiction. Since G5 < G’ the restriction of & on G, is finite and therefore the
twisted group algebra kG, is isomorphic to the Hamilton quaternions (—1, —1).
We are going to show that the existence of an element y as above will force k to
contain a primitive third root of one. If so, then the algebra (-1, —1) is split, so
we will be done.

To see this let u, be an element in kG of weight y. It normalizes k®G,
and so there is an element w € k*GY (of order 3 modulo k*) such that uyw!
centralizes k*G, (and in particular it centralizes w). It follows that u,w™! is in
the center of the subalgebra Dy = < k*Gl, u,w~" >. Furthermore, since u, and
w commute ord(uyw™') = ord(u,) = 3%,¢t > 1 where ord here is the order modulo
k*. It follows that k(uyw™!) is a field extension of degree 3*. We wish to show
that k(u,w™')/k is a Galois extension. Take any v element in G’ of order prime
to 6 and let u, be an element of weight v. Let P3 be a sylow 3-subgroup of G'.
Recall that v centralizes G; and P; and therefore the commutator of u, and u,,
where z € < G,, P; >, must be a root of unity ¢ in k. Clearly, ged(ord(v), 6) = 1
mmplies { = 1. It follows that Dy is centralized by all elements u, where v € G
of order prime to 6. But the subgroup < G'2,P3 > is normal in G’ of index
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prime to 3. It follows that all the sylow 3-subgroups of G’ lie in < G;, P3; >, as
does the unique sylow 2-subgroup, and so u,w™! commutes with all elements of
weights a power of 2 or 3. We conclude that the field k(u,w™") lies in the center
of k*G’. By Lemma A the extension Z(k®G') is Galois over k and the Galois
group is abelian. Therefore k(u,w™!)/k is a Galois extension of degree 3* and
(uyw™1)% € k. It follows that k(u,w™") contains k(C), where ¢ is a primitive
3t-root of unity. But then k¥ must contain a primitive third root of unity, because
otherwise 2 will divide the degree of the extension k(¢)/k.

Statement (b) follows from part (a) and the fact that kG, is isomorphic to
the Hamilton quaternions (—1, —1).

For part (c), if 3 divides the order of G’, then let G} denote the three part of
G'. The ring k*G} is a subfield of K and so is abelian over k by Lemma A. But

4 is cyclic, so k*G = k(y) for some element y of order a power of 3 modulo
k*. As we saw above this forces k to contain a primitive third root of one, and
so (—1,-1) is split over K.

Part (d) is now clear. 1

PROPOSITION 1.7: The group G is nilpotent.

Proof: We first claim that if p is a prime then every p-element of G commutes
with every p'-element of G'. Let g € GG be a p-element. Let ¢ # p be a
prime dividing the order of G' and let G; denote the ¢g-primary component of the
abelian group G'. Observe that G’; is characteristic in G’ and therefore normal in
G. It follows that the only way that the proposition can fail is in case that p = 3,
¢ =2 and G, is the Klein group. We claim that in this case K = Z(k*G') must
contain (3, a primitive 3rd root of unity, and therefore by Proposition 1.6 (b) the
algebra k*G’ is split. Let ug be an element whose weight g is of order 3%, e > 1
{(and so of order 3¢ modulo G’ since 3 does not divide the order of G' by part
(c) of Proposition 1.6). Clearly u, normalizes k®G" and therefore it normalizes
the center K. Moreover, by Proposition 1.6 (d), ug centralizes K. The argument
now is similar to the one above. Indeed, by the Skolem-Noether theorem there
is an element z € k*G’ such that w = ugx*l centralizes k%G and in particular
it commutes with z. Note that w has order a power of 3 modulo K*. Consider
the subalgebra B = k* <G ,g> of k°G and let L = Z(k® < G',g>). Clearly
K(w) C L. Thus

4 < dimg,(k* <G, ¢>) < dimg(y)(k* <G, 9>)
= dimg () (< k%G ,w >) < dimg k°G’ = 4
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by Proposition 1.6. This shows that K{w) = L. Next, by the twisted group
construction

3°dimg k°G = dimy(k® <G, g>) = dimg(y)(k* <G, ¢>) dimg K (w) dimg K

and so dimg K(w) = 3¢, e > 1.

Now L = K(w) is an ablelian extension of k£ by Lemma A and so K(w)/K is
abelian of degree 3¢ and we have seen that w has order a power of 3 modulo K*.
As before it follows that K contains (3. This finishes the proof of the claim.

Now let p divide the order of G and let P be a sylow p-subgroup of G. We
want to show that P is normal in G. Let g € G and let € P. Then grg ! = ¢z
where ¢ € G'. By Proposition 1.6, G is abelian so we may write ¢ = cjcy
where ¢; € G is a p-clement and ¢; is a p -element. By the first part of the
proof £ commutes with c; and so the three clements ¢, ¢;, gzg™! all commute.
Moreover, ¢12 € P because x € P and ¢; € G;, which is contained in every sylow

-1

p-subgroup of G. In particular, ¢,z is a p-element. But gzg™" is also a p-element

1

and so c3 = (¢;x)"!gzg~! is a p-element. Hence c; = 1 and so gzg~! = 1z € P.

This proves G is nilpotent. ]

In order to complete the proof of Theorem 2, we let Py,..., P, be the sylow
subgroups of G and let o; = resgl_ (a) for £ = 1,...,m. Denote by ¢; the k-
algebra embedding of k* P; in k*G. Clearly the {Im(¢;)i=1,. m} generate k*G
and by [AS4, Lemmas 2.1 and 2.2] Im(¢;) centralizes Im(¢;) for ¢ # j. Thus the
embeddings ¢; induce a surjective homomorphism

O kY P @ kP ® - @k P, — k°G.

A dimension argument shows that ¢ is an isomorphism.

We have now finished the proof of Theorem 2. To complete the proof of
Theorem 1, we need to show that G; # Zg x Z3. By the nilpotency of G we
have (G3) = G,. Moreover, it is clear from the isomorphism ¢ that the twisted
group algebra k*G, is a k-central division algebra. We therefore see that it is
sufficient to prove the following: Let G be a 2-group and let kG be a twisted
group division algebra with center k. Then G # Z, x Zo.

So suppose k*G is a division algebra with center k¥ and G' = {1,0,7,07} &
Zy x Zy. We know then that D = k®G’ is isomorphic to the symbol algebra
(—1,-1) over k, so in the usual notation for the quaternions we may assume
Uy = % and u, = j. Because G is a 2-group, some non-identity element of G’ lies
in the center of G. We will assume that o is in the center of G. It follows that
conjugation by a given element of G either fixes all of G’ or fixes o and switches
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7 and o7. If g € G, the automorphism Inn(u,y) preserves D and so is inner on
D. That is, there is an element r € D such that Inn(uy) = Inn(r) on D. The
discussion above implies that Inn(r)(3) is a k-multiple of ¢ and that Inn(r)(j) is
a k-multiple of either j or ij. Letting r = a +bi+cj + dij where a,b,c,d are in k
and computing, we easily see that r must be a k-multiple of one of the following
eight elements: {1,%,7,35,1+1¢,1—14,5+143,7 —ij}.

Now let z,y € G. The commutator (z,y) = zyz~ly~! lies in < 0,7 >. We
claim that in fact (z,y) € < ¢ >. If so we will have a contradiction. To prove
the claim we choose r, s € D such that Inn(z) = Inn(r) and Inn(y) = Inn(s) on
D. Then r~'u, and s~ lu, centralize D in k*G. Moreover, Inn(r) fixes r, so
uz and r commute. Similarly, 4, and s commute. We compute the commutator
(r~tug, s 'u,) in k*G. We obtain

(r~tug, s luy) = (r"luz)(s'luy)uglrugls

= (srs’lr_l)(uzuyu;lugl) = (7, 5) (g, Uy)

which lies in D because r,3 € D and (z,y} € G'. But the commutator
(r~lugz,s7lu,) centralizes D. Hence (r~'u;,s 'u,) lies in k. On the
other hand, we have seen that r and s must be k-multiples of the elements
{1,4,7,i5,1+14,1 —14,j+1j,j —ij}. Computing once more one sees that (r,s) is a
k-multiple of 1 or i. Hence (ugz,uy) = (r, )" (r~'ug, s7!u,) is also a k-multiple
of 1 or i and so (z,y) €< o >.

This finishes the proof of Theorem 1. |

2, Structure of the algebra

In this section and the next we analyze the division algebra k“G and prove
Theorems 3 and 4.

By Theorem 2 we may assume that G is a p-group. Furthermore, we know by
Theorem 1 that G is cyclic. It follows that the twisted group algebra kG’ is
a field extension of k and since the restriction of a to G’ is of finite type this
extension is cyclotomic, in fact it is p-cyclotomic. (In this paper, an extension
L/k is cyclotomic if L = k({) (rather than L C k({)), where ( is a root of unity;
it is p-cyclotomic if ¢ is a p-power root of unity.)

Question: How many p-th power roots of unity must k have? By [AS4, Theorem
1.7), if k*G # k (as we assume from now on) the field k¥ must contain a primitive
p-th root of unity. On the other hand, if k contains p,, the group of all p-power
roots of unity, then G' = 1. But then the group G is abelian, so the algebra
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k>G is a product of symbol algebras (see [AS4], proof of Theorem 1.1), and so
Theorems 3 and 4 hold. So we will assume that k contains (., a primitive p*,
s > 1 root of unity, but does not contain a primitive p**! root.

Consider the non-empty family
M= {G’ < H < G: Ky = k®H/k is a p-cyclotomic field extension}

and let N be a maximal element. Let ord(N) = p", r > 1. Since N is normal
in G, the field Ky is normalized by any group-like element u,, 0 € G. The
next result is a refinement of Theorem 1.1 in [AS5]. It establishes a connection
between the structure of G and the number of p-power roots of unity in k.

THEOREM 2.1: Ifu, centralizes K, then its order modulo K3, (or equivalently,
the order of ¢ modulo N) divides p°, the number of p-th power roots of unity in
k.

Remark: The proof is similar to the proof of Theorem 1.1 in [AS5] Theorem
1.1. Since the result is key for the rest of the paper we include a proof.

Proof: Assume the theorem is false. Then there is an element u, that centralizes
Ky and ord(o) = p®*! modulo N. Consider the subalgebra k* < N, > of k®G.
Clearly it is a commutative algebra (u, centralizes the field Kn) and hence it is
a field. Next, observe that G C< N, > and hence, by Lemma A, k¢ < N,o >
is an abelian extension of k. This implies that the field generated by u, over k
is also an abelian extension of k. Let us analyze the extension k(u,)/k. Assume
wP™" " = b e k*, ¢t > 0. A theorem of Schinzel ([S, Theorem 2], [K, p. 235]) says

o
" for some ¢ € k*. It

that if k(u,)/k is an abelian extension then b*" = cP
follows that u2’ = ¢'¢ where ¢’ is a p**1*t root of unity. To get a contradiction
recall that the order of u, modulo K} is p**!. This implies that k* < N, o? >
is a proper field extension of K3 and, in particular, the subgroup < N, o?" > of
G strictly contains N. But k* < N,o?" >= Kn(¢') is a cyclotomic p-extension

of k. This contradicts the maximality of N in II. 1

We will treat the case where p = 2 and /=1 ¢ k in the last section. We
therefore assume for the rest of this section that one of the following conditions
holds:

(1) pis odd, or

(2) V-1€k.

By construction, the extension Ky /k is p-cyclotomic of degree p",r > 1 (we can
assume that 7 # 0, for otherwise G is abelian and k®G is a product of symbol
algebras). By the assumption just stated, the extension Ky /k is cyclic.
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Let G/N = Zpni X Zpny X -++ X Zpnn. Since N is normal in G, conjugation
by group-like elements u, induces a map 7: G/N — Gal(Kn/k). As argued in
Lemma A, K,C\’;/N = k (so 7 is surjective). It follows that at least one of the
cyclic components in the decomposition of G/N is of order p” and it is mapped
onto Gal(Kn/k). So without loss of generality we assume that n; > r. We write
ny =r1+ewithe>0and G/N = Zrse X Zyny X -+ X Zpny. We denote this
isomorphism by ¢.

LEMMA 2.2: With the notation above we have ¢ < s and n; < s for every

t=2,...,m.

Proof: Let 0,72,...,7, be elements in G whose images in G/N generate the
respective components of G/N as in the decomposition above. We know that the
element o is mapped to a generator of the Galois group Gal(Kn/k). This implies
that o acts trivially on Ky and, by Theorem 2.1, its order modulo N divides
the number of roots of unity in k. This shows that € < s. Next, take one of the
7;’s. It normalizes the field Ky so there is a power ¢(z) such that the actions of
ot® and 7; agree on K. This means that 7,0~t(") acts trivially on K. Again
by Theorem 2.1 we conclude that its order modulo NV is bounded by the number
of p-th power roots in k. Finally, we observe that the order of 7,0 ~*(*) bounds
the order of 7; modulo N. This completes the proof of the lemma. ]

Consider the family of subgroups
M={N<H<<N,r,...,7n >: Ky = k®H is a field}.

Let Hy be a maximal element in M. As in the proof of Lemma A it follows that
k*H, is a Galois extension of k and that the G action on k*Hy (which is defined
by conjugation of group-like elements) induces a homomorphism of G/Hp onto
Gal(k*Hy/k).

Let S=< N,79,...,7, >. Let Dg = k*S and L be its center. Recall that o is
an element in G which generates the component Z,-+. modulo N. Clearly, by the
construction of S, ¢ is of order p"*¢ modulo S, or equivalently, ord(u,) = p"t¢
modulo Dg. Conjugation by u, in k*G normalizes Dy and therefore normalizes
L.

LEMMA 2.3: The action of u, on L induces an isomorphism of the cyclic group
of order p"*¢ generated by u,D§ with Gal(L/k).

Proof: Conjugation by u, induces a homomorphism 7 from the cyclic group of
order p"*¢ generated by u, Dj into Gal(L/k). We show that 7 is an isomorphism.
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Arguing as in the proof of Lemma A we see that L*» = k, where L% is the
subfield of L fixed by u,. This proves 7 is surjective onto Gal(L/k) and, in
particular, L/k is a cyclic extension. In order to prove 7 is injective we assume
L/k is an extension of dimension p?. We want to show that d = r + €. By
the discussion above we see that d < r +e¢. Assumee =r+¢—d > 0 and
consider the element ugd. It is of order p® modulo Dj and it fixes L. We claim
that the subalgebra ¥ generated by Dy and ugd has a center A which is of
dimension pf > p?. Note that this contradicts ord(u,) = p% modulo * and
A% = k. To prove the claim note that since u{,’d normalizes Dy and centralizes
L so (by the Skolem-Noether theorem) there is an element z in Dy such that
zzz7l = u{,’d :cu;”d for every x € Dq. This shows that ugdz_1 centralizes Dy and,
in particular, it centralizes z. It follows that u{,’d commutes with z. Since the
order of uf,d modulo Dy is precisely p®, we obtain that the order of u{,’dz“lmodulo
Dy is also p®. By assumption e > 0, so u{,’dz—lis not in Dy and, in particular, it
is not in L. On the other hand, it centralizes Dy and therefore it is in the center
of the algebra X =< D, ugdz‘1 >=< Do,u‘{,’d >. But clearly, L is also contained
in the center of ¥ and so the subfield generated by L and u{,’dz‘1 is contained in
A. This proves the claim and completes the proof of the lemma. ]

Let us pause for a moment and sketch the remaining steps in the proof of
Theorem 3. We will show that the subalgebra (L/k, o) generated by L and u, is
a cyclic crossed-product over k and moreover it is of the form k*Q) for some normal
subgroup Q of G. This will enable us to decompose D = k*G = (L/k,0) @ B
where B is isomorphic to a twisted group algebra of the form ¥°G/Q. Induction
on the order of G shows that D may be decomposed into a product of cyclic
algebras. But more than that, we will show that the group G/Q is abelian and
therefore, using the proof of Theorem 1.1 of [AS4], one shows that the algebra B
is isomorphic to a product of symbol algebras.

LEMMA 2.4: The field L is spanned by group-like elements. More precisely, there
is a normal subgroup U of G such that L = Ky = k*U.

Proof: By the maximality of Hy the action of S/Hy on Ky, is faithful and there-
fore the algebra kS is isomorphic to a crossed-product algebra (Kg,, S/Hp). It
follows that the center L is precisely the fixed field Kf,{) H _ g ,510. Thus, in
order to show that L is spanned by group-like elements we need to show that if
w = Tyug, +Taug, + -+ Tnlg, (x; € k* and ug, is a group like element of weight
6; € Hp) is an element in L = K,S,o, then ug, € L for every i = 1,...,n. In fact
it is sufficient to show that if w € KJ; (the fixed field by 7, and 7 arbitrary in
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S) then ug, € K for every 1 = 1,...,n. To see this recall that the extension
Ky, /k is abelian (Hy > G') and therefore every group-like element ug, 6 € Hy
generates a subextension k(ug)/k which is abelian. Therefore k(ug) is normalized
by every element of S. Take an element 7 € S. By Lemma 2.2 and the definitions
of Ky, and S, we have that ord(u,) < p* modulo K} , where p* is the number
of p-th power roots of unity in k. It follows that the orders of the automorphisms
in Gal(Ky,/k) and in Gal(k(ug)/k) which are induced by conjugation with wu,
are of p-power and bounded by p*. It follows that u,ugu; ! = (ug where ¢ = ((9)
is a p® root of unity and hence ¢ € k*. Assume now w € K7; . Then we have

-1 -1
w = u,wu; T = ur(Tiug, + Toug, + - + Tnug, )u;

= 114(61)ug, + T2((02)ug, + - - - + Tn(6n)ue, -

But the group-like elements {ug, }¢,cc are linearly independent over k and there-
fore ¢(6;) =1 for i = 1,...,n. This completes the proof of the lemma. ]

Having shown that the field L is isomorphic to a twisted group algebra k°U,
for some subgroup U in G, we proceed to show the subalgebra (L/k, o) generated
by L and u, is a cyclic crossed-product over k.

LEMMA 2.5: The subalgebra k* < U,o > is a cyclic crossed-product algebra,
k-central, of index p"*¢. Furthermore, L is a maximal subfield and k® < U,0 >=
(L/k,C =< u,L* >).

Proof: By Lemma 2.3, conjugation of L by u, induces an isomorphism of
the cyclic group < u,D5 > with Gal(L/k). So, all we have to show is that
ord(u,L*) = ord(Gal(L/k)) = p"t¢. We claim ord(u,k*) = p"*¢ (in fact this is
also necessary). Indeed, recall that o is an element in G which generates modulo
N the first component in the decomposition G/N = Zjr+e X Zpnz X -+ X Zpnn.
Furthermore, by the discussion preceding Lemma 2.2 conjugation by u, induces
a homomorphism from the group < ¢N > onto Gal(Kn/k). It follows that

€ .
ub € K§, = k, as desired. |

As explained above we wish to factor the subalgebra D; = k* < U, > from
k*G. This will use a refinement of the factorization lemma ([{AS4], Lemma 2.3)
which we prove below. To apply it we need two results, the first of which will be
used for a different purpose in the last section.

PRrROPOSITION 2.6: Let H be a cyclic group of order p", p a prime, n > 1. If
k®H is a field and the extension k® H/k is abelian, then:

(1) k2 pp.
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(2) If p is odd, then the extension k*H /k is cyclic.
(3) If p=2 and k D pg4, then k*H/k is cyclic.
(4) If p=2 and k 2 pa4, then Gal(k®H/k) is isomorphic to Zz x Zn-1.

Proof: We have k®H = k() where #?" = 3 € k and the extension k(8)/k has
degree p". It follows that z?" — 8 is the minimal polynomial of  over k. To prove
(1) note that, because k(6)/k is Galois, we must have all the roots of z?" — § in
k(8) and so k(8) D ppn 2 pp. But [k(up) : k] divides p—1. Hence [k(up) : k] = 1.

As we have just seen for arbitrary p the field k() contains ppn. We claim that
k(8P) contains ppn. Let w € k() be a primitive p”-th root of one. Since wf is a
root of zP" — 8 there is an automorphism o of k() over k such that o() = wé.
Hence ¢(6P) = wPOP. Because k(6)/k is assumed abelian, the extension k(67)/k
is Galois. Moreover, k(8P) = k*(HP) and so [k(6P) : k] = p®~!. In particular,
the minimal polynomial of 7 over k is A B and so k(6P) DO ppn-ar. In
particular, w? € k(#P). Hence both 67 and o(6)? are in k(A?). It follows that
there is an element p € k(07) and an integer m, 0 < m < p, such that o(8) = pf™.
Hence pf™ = wh, so k(6P) > p = wh'~™. We c¢laim m = 1. If not, there is an
integer t, 0 < t < p, such that (1 — m)t = ps + 1 for some integer s. Then
k(67) > pt = w'6P**! and so k(67) > w'd. But w' is a primitive p™-th root
of unity, so there is an element 7 € Gal(k(6)/k) such that T(w'8) = 6. Since
T preserves k(6P), we obtain # € k(8P), a contradiction. Hence m = 1, so
w = p € k(#P). This proves the claim.

We observe that the claim shows that for all 4, 1 < i < n, k(67") D Ppn-i+1.

We now proceed to prove parts (2) and (3) in the case where n < 2. If n =1
then both parts are clear. Assume n = 2. Then k*H = k() where 67 =B ek
and [k(f) : k] = p®. We have seen that k(67) > w, a primitive p®-root of unity.
Moreover, k 2 i, and so wP € k. There is an automorphism o of k(8) over
k that satisfies o(f) = w#. It suffices to show o has order p?. If not, then
oP = 1,50 8 = gP(0) = Nygr)/c(w)d, where Nir) i denotes the norm map
from k(6P) to k. Hence Nggry/x(w) = 1. Therefore it suffices to show that
Nigry/e(w) # 1. If w € k, then Nigry/x(w) = wP # 1. In particular, this takes
care of part (3). If w & k (so p is odd), then w € k(8”) and [k(6F) : k] = p, so
k(w) = k{(6?). Tt follows that the minimal polynomial of w over k is z? — wP and
S0 Nk(gp)/k(w) = (_l)p(_wp) = wP # 1.

We now prove parts (2) and (3) in the case where n > 2. We proceed by
induction on n. As we have seen k(6?) = k®HP is an abelian extension of k
and so is cyclic by the induction hypothesis. We also know that k(67) D ppe
and k(9”2) D fipn-1. Let w € k(6P) be a primitive p™-th root of one. Just as in
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the previous argument, there is an automorphism o of k(8) over k that satisfies
o(f) = wh. We would like to show o has order p". If not then o =1,
so 8 = a”"_l(()) = Ni(gr)/x(w)8, where Nigry i denotes the norm map from
k(67) to k. So it suffices to show Nigr)/i(w) # 1. Now o(6P) = wPOP and so
o restricted to k(AP) generates the Galois group of k(fP) over k. In particular,
a?" " (87) = 67 and so Ni(gr)k(w?) = 1. Similarly, Nk(g,,z)/k(w”2) = 1. But
apnﬂz(ep) # 6P and so y = Nk(o,,z)/k(w") # 1. It follows that + is a primitive
p-th root of one. Therefore we have ¥ = wPo(wP) - --o?" " ~2(wP)o®" *~!(wP) and
$0 6 = wo(w) - 0P ~2(w)a?" ~!(w) is a primitive p?-root of unity. Hence

Nk(@")/k(w) = wo'(w) .. .O-P"_’—z(w)o_pn—l_l(w)

= 607" (5)o%" " (8)0%" T (8) -+ o PP T (5),

n-2

But 0" fixes 6: If p = 2 this is true by assumption. If p is odd, 6 € k(67" ')
and so 0" fixes & because n > 3. Hence Nigry/k(w) = 07 # 1.

Finally we prove (4). Assume p = 2 and k& 2 p4. If n = 1 the result is
clear, so assume n > 2. Let ¢ be a primitive 4-th root of 1. Then we have seen

that k(62" ") 5 i and so k(6" ) = k(i). It follows that 62" = ¢i for some
¢ € k and so that 82" = —c2. Hence the element y = (1 + i)§2" satisfies
y? = 2i92"" = —2¢ € k. It follows that k(y)/k is a quadratic extension not

equal to k(62" '), so k(6)/k is not cyclic. But by assumption k(8)/k is abelian
and by part (3) the extension k(8)/k(3) is cyclic. It follows that Gal(k®H/k) is
isomorphic to Zy X Zan-1. 1

LeEMMA 2.7: With the notation above, the subgroup < U,o > is normal in G or
equivalently the crossed product D, = (L/k,C) is normalized by any group-like
element u,, 2 € G.

Proof: First note that u, normalizes Dy = k*S (S > G') and so it normalizes
its center L. So the lemma will be proved if we show that u,u,u;'u;! € L*.
To see this recall that L = k®U is a cyclic extension of k of degree p"*¢. It
follows that the group U is cyclic (otherwise U contains Z, x Z, and so the
extension L/k contains two different subfields of degree p over k). Let 7 be
a generator of U. Since the action of < u,k* > on L is faithful, it follows
that usuru;' = (u, where { = (pr+c is a primitive p"*¢ root of unity which is
obviously in L. But more than that: ¢ is a group-like element u;, where h € G and
ord(h) = max{1,p"**}. (Recall that k contains a primitive p* root of unity
but does not contain a primitive p**! root of unity.)
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CLAIM: Let uy = u,uou; u;" where A € G'. Then ord()) < ord(h). This shows
that A €< h > and uy € L.

Proof of the claim: Consider the action of u, on the field Ky = k*N(N >
G') by conjugation. Since conjugation by u, generates Gal(Ky/k) (paragraph
preceding Lemma 2.2), there is a power d = d(z) of u, such that u; %u, centralizes
Kn. Consequently, k&> < N,07% >= Kyn(u;%,) is a field extension of k.
Furthermore, it is an abelian extension and so is the subextension k(u;%u,)/k.
By Proposition 2.6, k(u;%u,)/k is cyclic.

SuBcLAM:  deg(k(u;%u,)/k) < max{p®,p"*¢}. Indeed, we observe that the
group G/N is mapped onto the group Gal(Kn(u,%u,)/k) and therefore onto
Gal(k(u;%u,)/k). On the other hand, exp(G/N) < max{p®,p"*¢} and the sub-
claim follows.

Finally, (u; %, )uqs(u; %) tust = uydurul. Thus ord(u;%usul) = ord(u,)

< max{p* ,p’“} and, since all p® roots of unity are contained in k, ord(}) <
max{1l,p"*t¢~*}. This completes the proof of the claim and also of the lemma.
B

As mentioned above, for the last step in the proof of Theorem 3 we need the
following factorization lemma.

FACTORIZATION LEMMA: Let k*G be a non-modular (that is, ord(G) € k*)
twisted group division algebra over k. Let H be a normal subgroup of G and
assume the subalgebra k®H is k-central. Then kG = k®H ® kPE where k°E
is a (k-central) twisted group algebra with finite group E and 8 € H?(E,k*).

Proof: We may assume of course that H is a proper subgroup of G. Let u; be a
group-like element whose weight s is in G but not in H. The group H is normal
in G so us normalizes k% H. Since the latter is simple over &, the Skolem-Noether
Theorem implies that there exists an element e(s) in the units of k&*H such that
e(s)"'u, centralizes k*H. Clearly, us and e(s) commute in k*G, and since 1, is
of finite order modulo k*, e(s) and therefore e(s) ~'u, is of finite order modulo k*.
Let T be the group of group-like elements in k*G and consider the subgroups @
of (k*H)*T'(T' normalizes (k®*H)*) that centralize k*H. Since k*H is k-central,
®Nk*H = k*,®/k* < (k“H)*I'/(k*H)* which is a quotient of I'/k* =2 G and
moreover a quotient of G/H. Thus a maximal such ® exists. We wish to show
that kG = (k*H)(k(®)). If not, there is an element s € G such that u, is not
n (k*H)k(®). In particular, s ¢ H, so repeating the argument above we get an
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element e(s)"'u, € (k*H)*T" which centralizes k¥*H and lies outside ®. Then
we can strictly enlarge the subgroup ® to < ®,e(s)"'u, >, contradicting the
maximality of &.

In order to complete the proof of the lemma, let 8 € H?(®/k*, k*) be the class
determined by the following central extension:

B:lok* o35 d/k" > 1.
This gives surjective homomorphisms
n: KB (®/k*) = k(®) and 1®7: (k“H) @ kP (®/k*) = (kK*H)k(®) = k°G.

Because ®/k* is the quotient of G/H, a dimension argument shows that & =
G/H and 1®n is an isomorphism. This completes the proof of the lemma. ]

We now complete the proof of Theorem 3:

By Lemma 2.7 the subgroup < U,o > is normal in G and by Lemma 2.5
the twisted group algebra k* < U,o0 >= (L/k,C =< u,L* >) is k-central.
The factorization lemma then implies that there exists a finite group E and
B € H*(E,k*) such that k®G = k> < U,0 > ®,kPE. It remains to show that E
is abelian and then, by the proof of ([AS4], Theorem 1.1}, ¥°E is a product of
symbol algebras. Assume the converse and let E' # {1} be the commutator. By
Theorem 1, E is cyclic. Moreover, the algebra k¥°E’ (as well as kG') is a non-
trivial cyclotomic p-extension of k. It follows that the subalgebra k=G’ ® kP E
is commutative and hence a field. This is of course impossible, since it contains
a finite non-cyclic group of units. ]

We now want to exhibit a twisted group division algebra D over a field %,
where exp(D} = p”, r > 2 but k contains no primitive p” roots of unity. Let p be
an odd prime and assume k contatns a primitive p®, s > 1 root of unity but not a
primitive p°**t' root. Consider the polynomial X P —a, wherea € k* and r > s.
Assume it is irreducible over k and let z be a root. The field extension K = k(z)
may be abelian and, if it is, it must be cyclic. Assuming that this is the case we
denote by H the Galois group and by o a generator. Since K/k is cyclic, it follows
(using a theorem of Schinzel, see [S, Theorem 2]) that a?’ = %" for some b € k*.
So if we take the p™+?* roots of this equality we get = = a'/P" = (b'/P", where ¢
is a p™** root of unity. We claim that ( is a primitive p"** root of unity. To see
this we raise the above equality to the p* power and get zP° = (?"b. Now if ( is
a p"**~! root of unity, then ¢?* is a p"~! root and the extension k(z?") = k(¢?")
is cyclotomic over k and of dimension < p™~!=°. But dimk(z)/k(z?’) < p?,
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so we get dimk(x)/k < p"~!. This contradicts our original assumption on the
polynomial X?" — a. Having shown that ¢ is a primitive p™+* root of unity, we
have that ¢P" is a primitive p” root of unity and from the equality above it follows
that modulo k* all the p roots of unity are powers of z. Let A = (K/k, o) be the
crossed-product algebra where the 2-cocycle is given by 2" = ¢ € k*. From the
discussion above it is clear now that the group G = < r,u, > /k* is of order p?"
and that A has a projective basis over k. Note that the group G is not abelian.
One can easily construct such crossed products A which are division algebras. It
should be emphasized that A is not (in general) a product of symbol algebras.
Indeed, choosing a suitable field k and an element ¢ € k* we can construct A as
above and of exponent > p°*!. Since k contains no primitive p**! root of unity
A is not (Brauer equivalent to) a product of symbol algebras.

3. Structure of the algebra, case 11

In this section we analyze the twisted group algebra D = kG where G is a 2-
group, and v/—1 ¢ k. By Theorem 1, G'is cyclic and hence the subalgebra kG’
is a 2-cyclotomic extension of k. We assume G' is not trivial, for then G is abelian
and the result follows from Theorem 1.1 [AS4]. Let ord(G') = 2" < ord(G) = 2".
Following the argument in the previous section we let N be a maximal subgroup
of G that contains G and the subalgebra Kn = kN is a 2-cyclotomic extension
of k. Assume ord(N) = 27*1, r > 0. Note that in this case the group N may be
cyclic (in which case we may have a group-like element u4 where 8 is a generator
of N, that satisfies ung = —1) or non-cyclic (e.g. N =< z > X < w > and
u? = —1 and uZ = 2, say over the field Q). In any case, Gal(Kn/k) & Zyr X 23,

which is non-cyclic unless r = 0. We first show that = 0 when k has positive
characteristic.

PROPOSITION 3.1: Ifk has positive characteristic, then ord(N) < 2.

Proof: First note that in positive characteristic any 2-cyclotomic extension is
necessarily cyclic: If w is a primitive 2* root of unity then the Galois group of
k(w) over k imbeds in the Galois group of F(w) over F, where F is the prime
field of k. Now assume ord(N) = 2". Because the k*N/k is cyclic, the group N
must also be cyclic. But then by Proposition 2.6, since k does not contain v/—1,
the only case in which k®*N/k is cylic is where ord(N) < 2. |

As in the previous section, conjugation by ug, g € G, induces a surjective
homomorphism 7: G/N — Gal(Kyn/k). Let G/N 2 Zysy X Zgsz X -+ X Zgea
=< T,Ta,...,Tn >, T; € G. It follows that there are two components (one of
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which may be trivial}, say Zas: X Zas2, such that 9(Zes X Zgs2) = Gal{Kn/k).
(Of course it follows from the previous.proposition that in positive characteristic
only one component is needed.) We may assume that s; > r and s > 1 and
after remembering that

G/N = Z27‘+e X Z21+I X Zgey X -0 X Z2lm =< &_1,(_7-2,71,,. .,7"‘ >,

0i,; €EG,m>0,¢ f20,s >1

PROPOSITION 3.2: ¢,f<lands;=1fori=1,...,m.

Proof: Assume first e or f is > 2. Then there is an element u,,r € G whose
order modulo K is 4 and it centralizes K, contradicting Theorem 2.1 (since
v/—1 ¢ k). The same argument shows that s; < 1 if u,, centralizes K. So let us
assume that u.,, acts non-trivially on K. Since the map n: G/N — Gal(Ky /k)
is surjective, there is an element y = y() € G such that § € Zyr+e X Z14r and
such that u'u,, centralizes Ky. Again, by Theorem 2.1, uy lu,, is of order at
most 2 modulo K and therefore ord(u,,) < 2. The proposition is now proved.
|

In fact we can obtain more from this argument: If u,, acts non-trivially on Ky
then the element u,, defined above, is also of order 2 modulo Ky (ord(uy) > 2
modulo Ky would imply ord(u, 'u,,) > 2 modulo K). This implies that either
eor fis 0, for if e = f = 1, the element u, would centralize K. This proves (i)
and (ii) and consequently (iii) of the following lemma.

LEMMA 3.3: Assume u,,, some ¢, does not centralize K. Then:
(i) Either e or f is 0. In particular, 2™+ < ord(Zpr+e X Zp14s) < 2742,
(ii) Ifuy, y € G, is a group-like element such thaty € Zyr+e X Zp1+s and u;lu.,,.
centralizes Kn, then uy is of order 2 modulo K.
(iii) There are elements vi,%s,- - -,¥m Such that

G/N X Zorre X Zoraf X Zgoy X -+ X Lgem =< 01,02, Y1y +s Ty >
and such that for all i, u.,, centralizes K. |

Denote by T' the group of group-like elements in k*G. Using Lemma 3.3 we
may assume that G/N decomposes as in (iii). We consider two cases:

CASE (1): Ord(Z2r+e X Z21+f) S 2?-}-2’
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CASE (2):  ord(Zyrse X Zyrag) = 2743,

Note that Case (1) includes the case of positive characteristic and in that case
r+e=0.

Case (1): Consider the division algebra Dy = k% < N, v;,...,¥m >. Asinsec-
tion 2, conjugation by elements of " induces an action of G/ < N,y1,...,vm >=
Zgrse X Zyrrs on L = Z(Dy). Furthermore, LC/<Nwoym> — k gince k =
Z(k*G). But, by construction, Ky C L (the elements u.,,, i = 1,...,m centralize
Kn) and sodim(L/k) > 2"*!. We claim dim(L/k) = ord(G/ < N, y1,. .., ¥m >).
If not, there is an element z € G, z not in < N,vy,...,¥m >, such that u, cen-
tralizes L and its order modulo D is 2. Applying the argument of Lemma 2.3 we
obtain a division algebra D; = k* < N,7y1,...,Ym, 2 > with center Ly, of dimen-
sion at least 27+ over k and such that LS/<M7¥m2> — Byt this is impos-
sible since by the assumption of Case (1), ord(G/ < N, 71, ...\ ¥Ym,2 >) < 27F1
This proves the claim.

Following the steps as in the previous section we consider the subalgebra
L(u,,,us,) < k*G. By what we have just done,

Gal(L/k)=G/ <N1719‘~s'}'m >

and L(u,,,u,,) is isomorphic to a crossed-product algebra (L/k, Gal(L/k)). In
particular, in the case of positive characteristic we see that L/k is a cyclic
extension of degree at most 4.

We want to apply the factorization lemma from section 2 to factor the algebra
L{uy,,us,) off from k*G. We therefore need to show two things:

(i) The field generated by L is a twisted group algebra £*U for some subgroup

UofG.

(ii) The subgroup < U,0;,0, > is normal in G.

It will then follow (see the argument at the end of Theorem 3) that k*G =
ke < U,01,02> @, k?(®/k*), where ®/k* is a finite abelian group and k?(®/k*)
is a product of quaternion algebras.

In the present situation (ii) follows at once because G < N < L*. Let us show
(i). The argument is the same as in Lemma 2.4. Indeed, we build a maximal
field of the form Ky, = k*Hy where N < Hy £ < N,71,...,Ym > and show that
K ;’;0, the invariant subfield of K g, under the action of 4, is spanned by group-like
elements. For this (as in Section 2) it is sufficient to show that for every z € Hy,
uyu ull = Au, where A € k*. To see this we consider the field extension
k(u,)/k. Clearly it is abelian, since Ky, /k is abelian. Furthermore, k(u.) is
normalized by the action of G (which is induced by conjugation with group-like
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elements). Next, note that exp(< N,v1,...,Ym > /Hp) = 2 and so every u,,
induces an automorphism of k(u,) of order at most 2. Now y;2y"'z=! € G’ and
7‘1 = Au,, where A € Kg C Kn. But u,, centralizes Ky and u,,
induces an automorphism of k(u,) of order at most 2, so X € {+1,-1} C k*.

SO Uy, Uz U

The proof now proceeds exactly as in section 2 and so we obtain Theoremn 4 in
Case (1). Note that, in particular, we have seen that this case includes the case of
positive characteristic and that in positive characteristic L/k is a cyclic extension
of degree at most 4. But in fact we can now see that degree 4 cannot occur in
positive characteristic: By the argument above L is a twisted group algebra k®U.
Since L/k is cyclic, the group U must be cyclic and so L = k(u), where u* € k.
But since & does not contain /—1, this is impossible by Proposition 2.6. We
therefore have the full part one of the theorem.

We consider now Case (2), that is ord(Zyr+e X Zp4s) = 2713 s0e = f = 1.
We let Dy = k* < N,71,...,7m > and L = Z(Dy). Again, by Lemma 3.3, we
have that Ky C L and, since L%27+*%+ = k, we have that 2"%! < dimy (L) <
27+3. Arguing as in Case (1) one shows that dim(L) # 2"*2 and if dimy (L) =
27+3 then the subalgebra L(u,,,u,,) C kG gives a crossed-product algebra
(L/k,Gal(L/k)) with Gal(L/k) & Z,r+1 x Z,4 and that this algebra can be factored
from k*G. Hence we have Theorem 4 in this case, if we can show that r = 0. We
will do so after we consider the other cases.

Now assume dimg(L) = 2"*" and hence L = Ky. Consider the field L(u,, )/,
some ig = 1,...,m. Clearly, the subgroup S =< 7,02 >= Zsr+1 x Z4 of G/N
acts on L(u,, )/k. Note that dimx(L(u,, ) = 27*2. Assume L(u, )% = k.
Then we can multiply, if necessary, each u,,, j # ¢ by a group-like element u,,,
w = w(j) € S and get group-like elements u,y; = Uy(j)Uy,, J = 1,...,m that
centralize L(u,, ). It follows that

L'=Z(Dy) = Z(k® < N, 7y, 1% >)) 2 Liuy,,)

and therefore dimg(L') > dimg(L(u,,)) = 272 Then just as above dimg(L’)
must equal 273 and the algebra L'(u,,,us,) is a crossed-product algebra
(L',Gal(L',k)) with Gal(L',k) & Zy-+ x Z4 that can be factored from k*G.
Again we need to show r = 0 and will do so after we consider the next case.
Finally, we consider the case where L(u7|0)s # k. Then (L(u,,lo)s c k) >

2. Recall that L° = k and (L(uy,,) + L) = 2. Consider the maps S N
Gal(L(uy,,)/k) 5 Gal(L/k). We know that ¢ is not surjective onto
Gal(L(u,,,)/k) but its composition with v is surjective onto Gal(L/k). It follows
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that im(¢) is mapped isomorphically onto Gal(L/k) by v and so
ker(S — Gal(L(u,, )/k) = ker(S — Gal(L/k)).

Let u, be a group-like element, where z is in S but not in N. Furthermore, assume
that u, centralizes L = K (such an element does exist since ord(S/N) = 27+3
and dimg (L) = 2"T!). The equality of the kernels above says that u, and Uy,
commute. Repeating this argument for all y;, we see that we can assume that
uz commutes with u,,,i = 1,...,m. Consider the twisted group algebra D; =
k* < N,v1,...,Ym,x >. By the discussion above k* < N,z > is contained in
L1, the center of Dy, and therefore dimy(L;) > dimg(k® < N,z >) > 27+2. This
case then proceeds just as the two previous ones.

At this point we have shown that if the characteristic of k is zero, then either
D is a tensor product of quaternion algebras or D & D; @ --- ® D, where
D;, 1 =1,...,n— 1 are quaternion algebras and D,, is isomorphic to a crossed
product, (K/k, H = Gal(K/k)) where H = Zyr x Zgs and r > 1 and 1 < s < 2.
We claim in fact H & Zor X Zys with 7 > 2 does not occur. This will finish
the theorem. To see this recall that we have shown that the field extension K

is a twisted group algebra K = k*U. It follows that U must be a cyclic group:
If not, U contains Zy X Zy X Zy or Za X Z4. If U contains Zy X Z9 X Zg, then
K will contain three quadratic extensions no one of which is contained in the
field generated by the others. It follows that the Galois group of K/k maps onto
Zy X Zy X Z9, a contradiction. If U contains Zs x Z4, then K contains a subfield
F = k%(Z,) which, by Proposition 2.6, will be Galois with group Z; x Z,. But
K will also contain k*(Z>) from the other factor of U and this quadratic will
not be a subfield of F. Again it follows that the Galois group of K/k maps onto
Zy X Zo X Zs, a contradiction. So U must be cyclic. But then, by Proposition
2.6, we know H is of the form Zyr x Z5. This proves the claim.
This finishes the proof of Theorem 4. ]
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