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ABSTRACT 

Let k be any field and G a finite group. Given a cohomology class a 6 
H 2 (G, k*), where G acts trivially on k*, one constructs the twisted group 

algebra kaG. Unlike the group algebra kG, the twisted group algebra may 
be a division algebra (e.g. symbol algebras, where G -~ Z ,  x Z , ) .  This 
paper has two main results: First we prove that  if D = kaG is a division 

algebra central over k (equivalently, D has a projective k-basis) then G is 
nilpotent and G' ,  the commutator subgroup of G, is cyclic. Next we show 
tha t  unless char(k) --- 0 and ~ ~ k, the division algebra D = kaG is 
a product of cyclic algebras. Furthermore, if D v is a p-primary factor of 
D, then Dp is a product of cyclic algebras where all but possibly one are 
symbol algebras. If char(k) = 0 and ~ @ k, the same result holds for 
Dr ,  p odd. If p = 2 we show that  D2 is a product of quaternion algebras 
with (possibly) a crossed product algebra (L/k,  [3), Gal(L/k)  ~- Z2 x Z2~. 
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0. I n t r o d u c t i o n  

Let k be a field. Recall that a Schur  a lgebra  over k is a k-central simple algebra 

which is a homomorphic image of a group algebra kG for some finige group G. 

Equivalently a k-central simple algebra A is Schur over k if A*, the group of 

units of A, contains a finitc group (say F) that spans A as a k-vector space. Let 

[A] C Br(k) be tlle class in the Brauer group of k which is represented by A and 

let S(k) be the subgroup of Br(k) generated by (and in fact consisting of) classes 

represented by Schur algebras. This is the Schur subgroup of Br(k). See [Y]. This 

construction has a projective version which was introduced by Lorenz and Opolka 

in 1978 ([LO]). They considered twisted group algebras k~G rather than group 

algebras, where (~ E H2(G, k*) (k* with the trivial G-structure). A p ro jec t ive  

Schur  a lgeb ra  over k is a k-central simple algebra which is a homomorphic 

image of kC'G for some finite group G and some c~ E H2(G, k*). It is not difficult 

to see that a k-central simple algebra A is projective Schur if and only if A* 

contains a subgroup F which spans A over k and is finite modulo the center (i.e. 

] k*F/k* [ < oc). Clearly, a projective Schur algebra A determines an element, 

[A], in Br(k) and we may consider the subgroup they generate in Br(k). This is 

PS(k), the projective Schur group of the field k. For the structure of projective 

Schur algebras and the projective Schur group see [LO], [NV], [AS2], [AS3]. The 

special situation where a projective Schur algebra is a division algebra (projective 

Schur division algebra) has been studied in [AS1] and [Sh]. The main result in 

[AS1] is that every projective Schur division algebra is isomorphic to a "radical 

abelian algebra" which is a special type of abelian crossed product (K/k, H, e~). 
The main tool in the proof was Amitsur's classification of finite groups contained 

in the group of units of division algebras (see [A]). In [Sh] the focus is on the type 

of finite groups of the form k*F/k* where F C D*, D being an arbitrary division 

algebra over k. Equivalently, the groups k*F/k* are the finite groups that occur 

as groups of inner automorphisms of D. 

One of the main motivations for introducing projective Schur algebras and the 

projective Schur group is that symbol algebras arc examples. Recall that a k- 

central simple algebra B of dimension n 2 is a symbol algebra if k cotitains (n 

(a primitive n-th root of unity) and B is generated by elements x, y that satisfy 

x '~ C k*,y '~ C k*,yx = (,~xy. Let F be the subgroup in B* generated by x 

and y. It is clear that k*F/k* (and by abuse of notation F/k*) ~ Z,~ x Z,,. 

Furthermore, F spai~s B as a vector space over k and so B is a projective Schur 

algebra. In fact it is evident from the construction that such an algebra is not 
only a homomorphic imagc of, but isomorphic to, a twisted group algebra over 
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k. In this situation we will say that  the algebra B has a p r o j e c t i v e  basis .  Tha t  

is, we say the algebra B has a projective basis if it contains a basis (.9 over k, 

consisting of invertible elements and such that k*~)/k* is a subgroup of B*/k*.  

As mentioned above, symbol algebras have projective bases but, as we'll see, 

these are not the only examples. In particular, in section 2 we exhibit a twisted 

group division algebra D over a field k, where exp(D) = p r  r _> 2 but k contains 

no primitive pr roots of unity. 

The object of this paper is to analyze division algebras over k which have a 

projective basis or equivalently division algebras over k which are k-isomorphic 

to a twisted group algebra kaG for some finite group G. Note that  the order of 

G must be an exact square. Here are the main results: 

THEOREM 1: I f  k~G is a division algebra with center k then the commutator 

subgroup of  G is cyclic. 

Remarks: (1) If Char(k) = p > 0, the result is in [AS1], Main Lemma. 

(2) The group G is a finite group of inner automorphisms of D = kC'G and 

hence it must satisfy the conditions in [Sh]. 

THEOREM 2: I f  kaG is a division algebra with center k then G is nilpotent. 

Furthermore, i f  P1, P 2 , . . . ,  P,n are the Sylow-p subgroups of G and ira, = rest, ai  

for i = 1 , . . . , m  then k~G ~- ka' P1 | " " |  k~mP, n. 

This theorem reduces tile analysis to p-groups. In that  case we have the 

following results: 

THEOREM 3: I f  G is a p-group and D = k'~G is a division algebra with center k 

and (p, k) satisfies one of the following conditions: 

(1) p is odd, or 

(2) p = 2 and v ' ~  e k, 

then D is the tensor product of  cyclic algebras (with projective bases) where all 

but possibly one are symbol algebras. 

The remaining cases are considered in the following result. 

THEOREM 4: Let p --- 2 and assume x/-A1 r k. I f  G is a 2-group and D = kaG 

is a division algebra with center k. Then: 

(1) I f  char(k) > 0, then D ~ DI | "'" | D,~ where all Di, i = 1 , . . . , n  are 

quaternion algebras. 

(2) I f  char(k) = O, then either 

(i) D ~ D1 | "'" | D~, where all D~ are quaternion algebras, or 
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(ii) D ~ D I | 1 7 4  where Di, i = 1 , . . . ,  n - 1  are quaternion algebras 

and D,, is isomorphic to a crossed product (K/k ,  H = Gal(K/k) )  

where H ~ Z2r x Z2 and r >_ 1. Furthermore, Dn has a projective 

basis as well. 

In section 1 we analyze the structure of the group G whenever kaG is a division 

algebra k-central and prove Theorems 1 and 2. In sections 2 and 3 we analyze 

the algebras in the case where G is a p-group and prove Theorems 3 and 4. 

1. T h e  s t r u c t u r e  o f  G 

Let D = kOG be a twisted group division algebra with center k and let f :  G• 

k* be a 2-cocycle representing a. Consider the group extension 

a =  [S]: 1 ~ k *  -~ r - 5  G - ~  1. 

Clearly the group F is contained in the units of D and it spans D as a vector 

space over k. We often write D = k(F). For every a E G we choose an element 

ua in F such that lr(u~) = a. We call F the set of g roup- l ike  elements in 

D*. Furthermore, we say that an element in 7r-l(a) is of we igh t  a E G. If H 

is a subgroup of G, we let k'~H denote the twisted group algebra obtained by 

restricting a to H. 

We start  with a lemma which will be used several times in the paper. 

LEMMA A: Let kaG be a twisted group division algebra with center k. Let N 

be a normal subgroup of G and let A = k a N  be the corresponding subalgebra 

in k~G. Then the center K = Z(A)  is a Galois extension of k. I~rthermore, i f  

N > G', then K / k  is abelian. 

Proof: We observe that group-like elements u~, a E G act on A by conjugation 

and therefore they act on its center K. Clearly, this action induces an action of 

G I N  on K.  Finally, K a/N = k since K G/N C Z(kaG) = k. | 

Observe that the group F is center by finite, so by a theorem of Schur the 

commutator  subgroup F' is finite. It is easy to see that the weights of the elements 

in F' are in G' and, moreover, (F'/k* =) k*F'/k* = G'. It follows that  k(F'),  

the subalgebra generated by F', is a division algebra isomorphic to the twisted 

group algebra kaG '. Note that since F' is finite, the cohomology class res(a) E 

H2(G ' , k*) can be represented by a 2-cocycle fo which takes finite values in k*, 

that  is for every a , r  in G', fo(a ,r)  E # C k*, where # denotes the group of 

roots of unity in k. We say that a cohomology class is of f in i te  t y p e  if it has 
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a representative which takes finite values in k*. We remark that  the center of 

k(F') is a field K which may be a proper extension of k. 

We want to analyze k(F') and so we first consider twisted group algebras kaG 

where the class a is of finite type and where the center may be a proper extension 

of k. 

THEOREM 1.1: Let k~G be a twisted group division algebra and assume a is of 

finite type. Then: 

(1) If  p # 2, the sylow p-subgroup of G is cyclic. 

(2) The sylow-2 subgroup of G is isomorphic to a subgroup of the dihedral 

group D2., sotne ft. 

Let us postpone the proof of the theorem and show that  for a p-group G 

satisfying (1) or (2) one can find a field k and a finite class a such that k'~G is a 

division algebra. 

It is not difficult to build an example with a cyclic p-group. For instance, 

assume k contains ~pr, a primitive / root of unity, but does not contain ~pr+~ 

where r _> 1 i fp  is odd and r >_ 2 i fp  = 2. Consider the field extension K = k(x) 

where x p" = ~p~. Then one checks that K ~- kaG where G = Cp, cyclic of order 

p" and that. the class a is finite. Note that i fp = 2 and i ~ k* then the statement 

above may be false (e.g. k = R the real numbers). 

Next we build examples of twisted group algebras kaG where G is isomorphic 

to a subgroup of D2- namely cyclic, Klein 4-group and dihedral. The cyclic case 

was considered above and the Hamilton quaternions is an example for the Klein 

4 group. So let us assume G -~ D2,,  n _> 3. Consider the group extension 

a: 1 -~  Z2 = 4  q >--+ Q2-+* --+ D2- --~ 1 

where Q2-+~ denotes the quaternion group of order 2 "+1. Clearly (~ is non- 

split. Furthermore, a is non-split upon restriction to any non-trivial subgroup 

of D2-. We specialize q = - 1  6 Q (rationals) and build a twisted group algebra 

D = Q~D2,,. We denote by F < D the image of Q2-+~ under this specialization. 

Clearly a is of finite type. We claim D is a division algebra. In fact we are to 

show that  D is the quaternion algebra ( - 1 , - 1 )  over a certain field extension of 

Q of degree 2 n-2. Let < a > be the unique maximal cyclic subgroup (of order 

2"-1) of G and let r be an involution in G such that Tar = a-1.  Let u~ and u~ 

be group-like elements in F <_ D of weight a and % respectively. A straigtforward 
2 2 - 1  2 " -3  calculation shows that  the elements ua + u~u,,u-~ 1, u,, + u,.u~,u T , . . . ,  u,, + 

2 " - 3  --I uru a u~. are in the center of D. Moreover, by the definition of the 2-cocycle 
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one checks that  for 0 < i < 2 n-3, we have 

u 2 ' + u r u 2 i u ~ l = I 2 + ~ 2 + ~ 2 + V / 2 + x / 2 ( i t i m e s  ) 

2 2 - - 1  2 n - 3  2 n - 3  1 and L = k(u~ + u~uau~ 1, u~ + u~u,u~ , . . . ,  u ,  + u~uo u~ ) is a field 

extension of degee 2 n-2 over k. On the other hand, (u2o"-2) 2 =u~=2 - 1  and 
2 " - - 2  ,, [ 2 n - 2  

(u~ )u~ = - u ~ t u  ~ ) and so D is isomorphic to the Hamilton quaternions 

( - 1 ,  - 1 )  over the field L. Finally, L is a real field and so D is a division algebra. 

We proceed to the proof of Theorem 1.1: 

CASE 1: p # 2. We show that  if P is a sylow p-subgroup of G, then P contains 

no rank 2 elementary abelian group (Zp x Zp). This will imply that  P is cyclic. 

Assume the converse and so let P D_ Po ~- ZB • Zp generated by a and T. As 

usual uo.,u~ are group-like elements in k~G of weights a and 7, respectively. 

The restriction of a to P0 may be represented by the equations u v = a, u p = b, 

u~u~ -- (u~uo and since a is a class of finite type we can assume that  a, b, ~ are 

roots of unty in k. In particular, the subgroup of D* generated by u~ and u ,  is 

finite. From the equations above it follows that  ( is a p-th root of unity. 

CASE 1.1: ~ = 1. Then K = k~Zp x Zp is commutative. By replacing ua and 

u~ by powers relatively prime to p, we may assume u~ and u~ are p-power roots 

of unity. But then one of two is a power of the other. If  u~ = u m, then writing 

m = ps+r ,  where 0 _< r < p, gives that  u~ is a k* multiple of uS, a contradiction. 

CASE 1.2: ( =apr imi t ivep- throoto funi ty .  In t h i s c a s e k a Z p x Z p i s a s y m b o l  

algebra (a, b) where a and b are roots of unity. Replacing the algebra by a power 

prime to p we may assume a and b are p-power roots of unity. But that  forces 

a = b = (,  because otherwise a or b is a p-th power in k and so (a, b) is split. But 

for p odd the symbol algebra ((, ()  is split, so we have a contradiction. 

This completes the proof of part  (1) of Theorem t.1. 

CASE 2: p = 2. We need the following lemma. 

LEMMA 1.2: Let G be a 2-group, k~G a division algebra where a is a class of 

finite type. Then: 

(i) G contains no elementary abelian group isomorphic to 7,2 x Z2 x Z2. 

(ii) G contains no group isomorphic to Z2 x Z4. 
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(iii) G contains no group isomorphic to Qs, the quaternion group of order 8. 

Assuming the Lemma, part (2) of Theorem 1.1 now follows since a finite 2- 

group not containing any of these 3 types of groups must be isomorphic to a 

subgroup of D2- for some n. (See [AGO].) 

Proof of Lemma 1.2: (i) Assume G contains Z2 x Z2 x Z2 and let a, T, U be 

generators. Let u~, u~, uv be group-like elements in k~G with weights a, r,  u 

respectively. Since the class a is of finite type the following relations are satisfied: 

2 2 = b ,  2 U a ~ a ,  u r u v : c~ U a u r  : ~ l ~ r ? l a ,  U a U v  ~- ~ 2 U v U a ,  UTU~, -~ ~3Uv'tl ,  r 

where a,b,c are roots of unity in k* and ~t,~2,r e {1, -1}.  If one of the r (say 

fit) is 1, we get that k s < or, v > is a field. This yields a contradiction as in case 

1.1 above. If ~1 = 42 = ~3 = - 1  we consider the elements uau~ and uv. They 

generate a field and again we get a contradiction. 
2 4 b and (ii) Assume a, T e G generate a subgroup = Z2 x Z4. Then u a = a, u ,  = 

u~u~ = ~u~u~ where a, b, ~ are roots of unity in k. Observe that  ~ E {1 , -1} ,  so 

2 generate a commutative subalgebra ~ kaZ2 x Z2 which is not possible. ua and u v 

(iii) To show that  G contains no subgroup isomorphic to Qs, recall that M(Qs),  

the multiplicator of Qs, vanishes. Applying the universal coefficient theorem for 

Qs gives 

0 ~ Ext~((Qs)~b, k*) ~ g2(qs,  k*) ---+ Hom(M(Qs),  k*) = 0 --+ 0 

where (Qs)ab = Qs/Q's is the abelianization of Qs and inf denotes the inflation 

map induced by the natural map Qs --+ (Qs)ab. It follows that every cohomology 

class (regardless whether the class is finite or not) is trivial upon restriction to 

the commutator subgroup Q's = Z(Qs) = Z2 and therefore the twisted group 

algebra kaG contains a non-trivial group algebra isomorphic to kZ2. This shows 

that k~G is not a division algebra. This completes the proof of Lemma 1.2 and 

also of Theorem 1.1. | 

Remark 1.3: The argument above shows that  if kaG is a twisted group division 

algebra (where ~ is not necessarily of finite type) then the group G contains no 

quaternion group of order 8. On the other hand, it is easy to see that if ~ is not 

of finite type one can construct examples of twisted group division algebras kOG 

where G contains any given abelian group (e.g. products of symbol algebras). 

We are now heading toward the proofs of Theorems 1 and 2 of the introduction. 

Resuming our original notation we let D = kaG be a k-central division algebra 
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(a arbitrary). Recall that the restriction of a to G'is of finite type so we can 

invoke Theorem 1.1 and conclude that the sylow p-subgroups of G' must be cyclic 

in the odd case or a subgroup of a dihedral 2-group in the even case. 

We begin with the following result. 

PROPOSITION 1.4: Let D = k~G be as above. 

(1) The double commutator G" is a 2-group. 

(2) The sylow 2-subgroup of G' is characteristic in G. 

Proof: First note that (2) follows from (1) for if G" is a 2-group, then G'2, 

the sylow 2-subgroup of G', is normal in G'. This of course implies that G' 2 is 

characteristic in G' and therefore characteristic in G. To prove (1) we show that 

G" Cl P = {1} for every sylow p r 2 subgroup P of G'. If p is an odd prime, 

Theorem 1.1 says that P is cyclic and consequently M(G')p <_ M ( P )  = 0 where 

Ap denotes the p-primary component of the abelian group A. It follows that the 

inflation map (in the universal coefficient theorem) 

0--} Ext~((G)ab, k*)p i~ 2 ' ' H (G ,  k*)v ~ Hom(M(G ), k*)v = 0 ---+ 0 

is an isomorphism. This means that the p-component of any cohomology class 

a E H2(G ', k*) is trivial on G" and therefore trivial on G " n P .  On the other hand, 

G" resg,,np(a ) 0. it is clear that the p' component of a vanishes on n P, so = 

This shows that the group algebra k[G" n P] C D, which is impossible unless 

a "  cl P = {1}. | 
t 

We know G 2 is either cyclic or the Klein group of order 4 or dihedral of order 
t 

2 n, n > 3. We will eventually show that G 2 is in fact cyclic. The previous 

proposition allows us to eliminate the dihedral case: 
i 

COROLLARY 1.5: G 2 is not isomorphic to the dihedral group of order 2", n >_ 3. 

Proof: Assume G' 2 -~ D2-, n > 3. Let 6'2,-, _< G'2 be the unique cyclic subgroup 

of order 2 '~-1. Clearly C:,-~ is characteristic in G'~ and by Proposition 1.4 it is 

characteristic in G' and in G. But Aut(C2,-~ ) is abelian and so the map induced 

by conjugation G --+ Aut(C2,-~) factors through G/G' .  This shows that  the 
i 

action of G' is trivial on 6'2,-1, contradicting our assumption on G 2. | 

PROPOSITION 1.6: I f  G' 2 is cyclic, then G' is cyclic. I f  G' 2 is isomorphic to the 

Klein group, then we have the following: 
(a) a ' ~  ' a '  = G2 x C where C is cyclic of odd order. In particular is abelian. 

(b) The center o f k~G ' is the field K = k~C and k~'G ' ~- (-1,  -1)K.  
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(c) 3 does not divide the order of G 1. 

(d) The field extension K / k  is abelian of degree prime to 6. 

Proof: Assume G' 2 cyclic. We then claim the sylow p-subgroups in G' for 

different primes p commute with each other. Indeed, take x ,y  E G' of orders 

pS and qt respectively where p and q are different primes. Consider the equality 
! 

xyx  -1 = zy where z E G 2 (by Proposition 1.4). We assume (w.l.o.g.) that  q ~ 2. 

Raising this equation to the qt power we get 1 = ( x y x - 1 )  q' : zzYz  y2 . . .  Z q t -1  

where z y' = y izy- i .  It follows that if the action of y on G' 2 is trivial (and in 

particular y centralizes z), z itself must be trivial (i.e. x and y commute). But 

we are assuming G' 2 cyclic and so its automorphism group is a 2-group, so we 

have proved the claim. By Proposition 1.4, G' 2 is normal in G' and by what we 

have just proved it is central and the quotient group G'/Z(G')  is abelian. Hence 

G' is nilpotent and so, in fact, cyclic. 
I 

Now assume G 2 = Z2 • Z2. Because the automorphism group of Z2 x Z2 is $3, 

the argument just given shows that every sylow p-subgroup commutes with every 

sylow q-subgroup as long as p and q are distinct and we are not in the situation 

where one of two is 2 and the other is 3. In particular, it follows (just as above) 

that G' is abelian and has the desired decomposition unless some generator y 
t 

of a (cyclic) sylow 3-subgroup operates non-triviMly (by conjugation) on G2, 

so we may assume we are in that case. We will show that this case leads to a 
i i 

contradiction. Since G 2 < G' the restriction of a on G 2 is finite and therefore the 

twisted group algebra k~G'2 is isomorphic to the Hamilton quaternions ( - 1 , - 1 ) .  

We are going to show that the existence of an element y as above will force k to 

contain a primitive third root of one. If so, then the algebra ( - 1 , - 1 )  is split, so 

we will be done. 

To see this let uy be an element in kaG ' of weight y. It normalizes k~G'2 

and so there is an element w E k~G'2 (of order 3 modulo k*) such that u~w -1 

centralizes k~G'2 (and in particular it centralizes w). It follows that u~w -1 is in 
Ot I the center of the subalgebra Do = < k C,2,uyw -1 >. Furthermore, since uy and 

w commute ord(uyw -1) = ord(u~) = 3 t, t >_ 1 where ord here is the order modulo 

k*. It follows that k(u~w -1) is a field extension of degree 3 t. We wish to show 

that k(uyw-1)/t~ is a Galois extension. Take any v element in G' of order prime 

to 6 and let u~ be an element of weight v. Let P3 be a sylow 3-subgroup of G I. 
s 

Recall that v centralizes G 2 and Pa and therefore the commutator of u~ and uz, 

where z e < G' 2, P3 >, must be a root of unity ~ in k. Clearly, gcd(ord(v), 6) = 1 

implies ( = 1. It follows that  Do is centralized by all elements u ,  where v E G' 
i 

of order prime to 6. But the subgroup < G2, P3 > is normal in G' of index 
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prime to 3. It follows that all the sylow 3-subgroups of G I lie in < G'2, P3 >, as 

does the unique sylow 2-subgroup, and so uyw -1 commutes with all elements of 

weights a power of 2 or 3. We conclude that the field k(uyw -1) lies in the center 

of k~G '. By Lemma A the extension Z(k~'G ') is Galois over k and the Galois 

group is abelian. Therefore k(uyw-1) /k  is a Galois extension of degree 3 t and 

(uyw-l )  3~ E k. It follows that k(uyw -1) contains k((), where ( is a primitive 

3t-root of unity. But then k must contain a primitive third root of unity, because 

otherwise 2 will divide the degree of the extension k(() /k .  

Statement (b) follows from part (a) and the fact that k~G'2 is isomorphic to 

the Hamilton quaternions ( -  1, - 1). 

For part (c), if 3 divides the order of G', then let G~ denote the three part of 

G ~. The ring kaG'3 is a subfield of K and so is abelian over k by Lemma A. But 

G~ is cyclic, so k~G'3 = k(y) for some element y of order a power of 3 modulo 

k*. As we saw above this forces k to contain a primitive third root of one, and 

so ( -  1, - 1) is split over K.  

Part  (d) is now clear. II 

PROPOSITION 1.7: The group G is nilpotent. 

Proo~ We first claim, that if p is a prime then every p-element of G commutes 

with everypr-element o f G  I. Let g E G \ G '  be ap-element.  Let q r p be a 
i 

prime dividing the order of G' and let Gq denote the q-primary component of the 
I 

abelian group G'. Observe that Gq is characteristic in G' and therefore normal in 

G. It follows that the only way that the proposition can fail is in case that p = 3, 
t 

q = 2 and G 2 is the Klein group. We claim that in this case K = Z(kaG ') must 

contain ~3, a primitive 3rd root of unity, and therefore by Proposition 1.6 (b) the 

algebra k'~G ' is split. Let u 9 be an element whose weight g is of order 3 ~, e >_ 1 

(and so of order 3 e modulo G' since 3 does not divide the order of G' by part 

(c) of Proposition 1.6). Clearly ug normalizes k~'G ' and therefore it normalizes 

the center K. Moreover, by Proposition 1.6 (d), u 9 centralizes K. The argument 

now is similar to the one above. Indeed, by the Skolem-Noether theorem there 

is an element x E k~G ' such that  w ---- UgX -1 centralizes k'~G ' and in particular 

it commutes with x. Note that w has order a power of 3 modulo K*. Consider 

G' t h e s u b a l g e b r a B  = k a <  , g >  of k~G and let L =  Z(k ~ < G ' , g > ) .  Clearly 

K(w)  C_ L. Thus 

4 _< dimL(k a < G', g >) _< dimK(w)(k ~ < G', g >) 

= dimK(w)(< kaG' ,w >) <__ dimKk~G ' = 4 
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by Proposition 1.6. This shows that  K ( w )  --- L. Next, by the twisted group 

construction 

3 ~ dimk k ~ G  ' = dimk(k ~ < G' ,  g >) = dimg(,~)(k ~ < G' ,  g >) d im~ K ( w )  dimk K 

and so dimK K ( w )  = 3 ~, e > 1. 

Now L = K ( w )  is an ablelian extension of k by Lemma A and so K ( w ) / K  is 

abelian of degree 3 e and we have seen that  w has order a power of 3 modulo K*. 

As before it follows that  K contains ~3. This finishes the proof of the claim. 

Now let p divide the order of G and let P be a sylow p-subgroup of G. We 

want to show that  P is normal in G. Let g 6 G and let x C P. Then gxg -1 = cx 

where c C G' .  By Proposition 1.6, G' is abelian so we may write c -= ClC2 

where cl E G' is a p-element and c2 is a p'-element. By the first part  of the 

proof x commutes with c2 and so the three elements c2, ClX, gxg  -1 all commute. 
I 

Moreover, c l x  6 P because x 6 P and cl e Gp which is contained in every sylow 

p-subgroup of G. In particular, c l x  is a p-element. But gxg -1 is also a p-element 

and so c2 = ( c l x ) - l g x g  -1 is a p-element. Hence c2 = 1 and so gxg -1 = c l x  6 P .  

This proves G is nilpotent. II 

In order to complete the proof of Theorem 2, we let P 1 , . . . ,  Pm be the sylow 

subgroups of G and let ai  = resG,(a) for i = 1 , . . . , m .  Denote by r the k- 

algebra embedding of k'~'Pi in k'~G. Clearly the {Im(r ..... m} generate kC'G 

and by [AS4, Lemmas 2.1 and 2.2] Im(r centralizes Im(r  for i # j .  Thus the 

erabeddings r induce a surjective homomorphism 

r k~" P1 | kc'~ P2 |  | kC' 'P,n --+ k'~G. 

A dimension argument shows that  r is an isomorphism. 

We have now finished the proof of Theorem 2. To complete the proof of 

Theorem 1, we need to show that  G' 2 :~ Z2 x Z2. By the nilpotency of G we 
I 

have (G2)' = G2. Moreover, it is clear from the isomorphism r that  the twisted 

group algebra k~G2 is a k-central division algebra. We therefore see that  it is 

sufficient to prove the following: Let G be a 2-group and let k " G  be a twisted 

group division algebra with center k. Then G' ~ Z2 x Z2. 

So suppose k~'G is a division algebra with center k and G'  = { 1 , O ' , T , O " r }  

Z2 x Z2. We know then that  D = kC'G ' is isomorphic to the symbol algebra 

( - 1 , - 1 )  over k, so in the usual notation for the quaternions we may assume 

u~ = i and u~ = j .  Because G is a 2-group, some non-identity element of G'  lies 

in the center of G. We will assume that  a is in the center of G. It follows that  

conjugation by a given element of G either fixes all of G'  or fixes a and switches 
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r and a t .  If  g E G, the automorphism Inn(ug) preserves D and so is inner on 

D. Tha t  is, there is an element r E D such that  Inn(ug) = Inn(r) on D. The 

discussion above implies that  Inn(r)(/)  is a k-multiple of i and that  Inn(r ) ( j )  is 

a k-multiple of either j or i j .  Letting r = a + bi + cj + dij  where a, b, c, d are in k 

and computing, we easily see that  r must be a k-multiple of one of the following 

eight elements: {1, i , j ,  ij, 1 + i, 1 - i , j  + ij,  j - i j} .  

Now let x , y  E G. The commutator  (x ,y )  = x y x - l y  -1 lies in < a , r  >. We 

claim that  in fact (x, y) E < a >. If so we will have a contradiction. To prove 

the claim we choose r, s �9 D such that  Inn(x) = Inn(r)  and Inn(y) = Inn(s) on 

D. Then r - lUx  and s- lUy centralize D in kaG. Moreover, Inn(r)  fixes r, so 

ux and r commute. Similarly, uy and s commute. We compute the commutator  

( r - l u x ,  s - l u y )  in kaG. We obtain 

(r-lug, s-iu ) = 

= (srs-lr-1)(u uy ;lu;1) = 

which lies in D because r , s  E D and (x,y)  E G r. But the commuta tor  

( r - l u , , s - l u y )  centralizes D. Hence ( r - l u ~ , s - l u y )  lies in k. On the 

other hand, we have seen that  r and s must be k-multiples of the elements 

{ 1, i, j ,  i j ,  1 + i, 1 - i, j + i j ,  j - i j  }. Computing once more one sees that  (r, s) is a 

k-multiple of 1 or i. Hence (u~, uy) = (r, s ) - l ( r - l u , ,  s - l u y )  is also a k-multiple 

of l or i and so (x,y)  c < a > .  

This finishes the proof of Theorem 1. | 

2, Structure of  the algebra 

In this section and the next we analyze the division algebra kaG and prove 

Theorems 3 and 4. 

By Theorem 2 we may assume that  G is a p-group. Furthermore, we know by 

Theorem 1 that  G' is cyclic. It  follows that  the twisted group algebra kaG ' is 

a field extension of k and since the restriction of a to G r is of finite type this 

extension is cyclotomic, in fact it is p-cyclotomic. (In this paper, an extension 

L / k  is c y c l o t o m i c  if L = k(~) (rather than L C_ k(~)), where ~ is a root of unity; 

it is p - c y c l o t o m i c  if r is a p-power root of unity.) 

Question: How many p-th power roots of unity must k have? By [AS4, Theorem 

1.7], if kaG ~ k (as we assume from now on) the field k must contain a primitive 

p-th root of unity. On the other hand, if k contains #p, the group of all p-power 

roots of unity, then G' = 1. But then the group G is abelian, so the algebra 
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kSG is a product of symbol algebras (see [AS4], proof of Theorem 1.1), and so 

Theorems 3 and 4 hold. So we will assume that k contains (p,, a primitive pS, 

s >_ 1 root of unity, but does not contain a primitive p,+l root. 

Consider the non-empty family 

II = {G' < H <_ G: KH : kSH/k is a p-cyclotomic field extension} 

and let N be a maximal element. Let ord(N) = pr, r >_ 1. Since N is normal 

in G, the field KN is normalized by any group-like element ua, a E G. The 

next result is a refinement of Theorem 1.1 in [AS5]. It establishes a connection 

between the structure of G and the number of p-power roots of unity in k. 

THEOREM 2.1: If  ua centralizes KN, then its order modulo K~r (or equivalently, 
the order of a modulo N) divides pS, the number of p-th power roots of unity in 

k. 

Remark: The proof is similar to the proof of Theorem 1.1 in [AS5] Theorem 

1.1. Since the result is key for the rest of the paper we include a proof. 

Proof'. Assume the theorem is false. Then there is an element u~ that centralizes 

KN and ord(a) = p8+1 modulo N. Consider the subalgebra k s < N, a > of kSG. 
Clearly it is a commutative algebra (ua centralizes the field KN) and hence it is 

a field. Next, observe that G' C_< N, a > and hence, by Lemma A, k s < N, a > 

is an abelian extension of k. This implies that the field generated by ua over k 

is also an abelian extension of k. Let us analyze the extension k(u,) /k .  Assume 
pS+l+t k*, u a = b e t >_ 0. A theorem of Schinzel (IS, Theorem 2], [K, p. 235]) says 

that  if k(u~)/k is an abelian extension then b p~ = c f+l+t for some c E k*. It 
p" ~' ps+l+t foUows that  u~ = ( ' c  where is a root of unity. To get a contradiction 

recall that  the order of u~ modulo KTv is ps+l. This implies that  k a < N, o "p, > 

is a proper field extension of K~r and, in particular, the subgroup < N, a v~ > of 

G strictly contains N. But k s < N, aV" > = K N ( ( )  is a cyclotomic p-extension 

of k. This contradicts the maximality of N in H. II 

We will treat  the case where p = 2 and VCL-1 r k in the last section. We 

therefore assume for the rest of this section that  one of the following conditions 

holds: 

(1) p is odd, or 

(2) e k. 
By construction, the extension K~r/k is p-cyclotomic of degree f ,  r >_ 1 (we can 

assume that  r # 0, for otherwise G is abelian and kaG is a product of symbol 

algebras). By the assumption just stated, the extension K N / k  is cyclic. 
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Let G / N  TM Zp,~ x Zp,2 • ""  x Zp,h. Since N is normal in G, conjugation 

by group-like elements u~ induces a map rl: G / N  --+ Gal(KN/k) .  As argued in 

Lemma A, r"C/N = k (so 77 is surjective). It follows that at least one of the * L  y 

cyclic components in the decomposition of G / N  is of order p~ and it is mapped 

onto Gal (Kg /k ) .  So without loss of generality we assume that nl _> r. We write 

nl = r + e  with e_> 0 a n d G / N  ~- Zpr+, x Zp.2 x . . .  x Zp~,. We denote this 

isomorphism by r 

LEMMA 2.2: With the notation above we have e <_ s and ni _< s for every 

i = 2 , . . . , n .  

Proof'. Let a, r 2 , . . . , r h  be elements in G whose images in G / N  generate the 

respective components of G I N  as in the decomposition above. We know that the 

element a is mapped to a generator of the Galois group Gal(KN/k) .  This implies 

that apr acts trivially on KN and, by Theorem 2.1, its order modulo N divides 

the number of roots of unity in k. This shows that e _< s. Next, take one of the 

T/'S. It normalizes the field KN so there is a power t(i) such that the actions of 

cr t(i) and ri agree on KN. This means that ria -t(i) acts trivially on KN. Again 

by Theorem 2.1 we conclude that its order modulo N is bounded by the number 

of p-th power roots in k. Finally, we observe that the order of ria -*(i) bounds 

the order of ri modulo N. This completes the proof of the lemma. | 

Consider the family of subgroups 

M = {N  <_ H << N, r2 , . . . ,  rh > : KH = k'~H is a field}. 

Let H0 be a maximal element in M. As in the proof of Lemma A it follows that 

kC'Ho is a Galois extension of k and that the G action on k'~Ho (which is defined 

by conjugation of group-like elements) induces a homomorphism of G/Ho onto 

Gal( k'~ Ho/  k ). 

Let S = < N, r2, �9 �9 rh >. Let Do = k'~S and L be its center. Recall that a is 

an element in G which generates the component Zp~+, modulo N. Clearly, by the 

construction of S, a is of order pr+' modulo S, or equivalently, ord(ua) = pr+~ 

modulo D~). Conjugation by u ,  in k~G normalizes Do and therefore normalizes 

L. 

LEMMA 2.3: The action of ua on L induces an isomorphism of the cyclic group 

of order pr+~ generated by uoD~ with Gal(L/k).  

Proof'. Conjugation by u~ induces a homomorphism 7] from the cyclic group of 

order pr+~ generated by uoD~) into Gal(L/k).  We show that r/is an isomorphism. 
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Arguing as in the proof of Lemma A we see that  L ~'~ = k, where L u~ is the 

subfield of L fixed by u~. This proves r I is surjective onto Gal(L/k) and, in 

particular, L / k  is a cyclic extension. In order to prove ~? is injective we assume 

L / k  is an extension of dimension pd. We want to show that  d = r + e. By 

the discussion above we see that  d < r + e .  Assume e = r + e - d  > 0 and 
pd pC * consider the element u~ . It  is of order modulo D O and it fixes L. We claim 

pd 
that  the subalgebra Z generated by Do and uo has a center A which is of 

dimension pf  > pd. Note that  this contradicts ord(u~) = pd modulo E* and 
pd 

/V'o _~ k. To prove the claim note that since uo normalizes Do and centralizes 

L so (by the Skolem-Noether theorem) there is an element z in Do such that  
p,~ _pd 

zxz -1 = u o xuo for every x E Do. This shows that  uP~dz -1 centralizes Do and, 
pa 

in particular, it centralizes z. It  follows that  u~ commutes with z. Since the 
pd , 

order of uo modulo D o is precisely pe, we obtain that  the order of u pd z -  1modulo 

D~ is also pe. By assumption e > 0, so u f z - ~ i s  not in Do and, in particular, it 

is not in L. On the other hand, it centralizes Do and therefore it is in the center 

of the algebra E =< Do, uPdz -1 > = <  Do, uP~ ~ >. But clearly, L is also contained 

in the center of ~ and so the subfield generated by L and u pd z-1 is contained in 

A. This proves the claim and completes the proof of the lemma. | 

Let us pause for a moment and sketch the remaining steps in the proof of 

Theorem 3. We will show that  the subalgebra (L/k,  a) generated by L and ua is 

a cyclic crossed-product over k and moreover it is of the form k~Q for some normal 

subgroup Q of G. This will enable us to decompose D = k~G ~- (L/k,  a) @k B 

where B is isomorphic to a twisted group algebra of the form k~G/Q. Induction 

on the order of G shows that  D may be decomposed into a product of cyclic 

algebras. But more than that,  we will show that  the group G/Q is abelian and 

therefore, using the proof of Theorem 1.1 of [AS4], one shows that  the algebra B 

is isomorphic to a product of symbol algebras. 

LEMMA 2.4: The field L is spanned by group-like elements. More precisely, there 

is a normal subgroup U of G such that L = Ku = k~U. 

Proof: By the maximality of Ho the action of S/Ho on KHo is faithful and there- 

fore the algebra kaS is isomorphic to a crossed-product algebra (KHo, S/Ho). I t  

follows that  the center L is precisely the fixed field wS/H~ = KSHo. Thus, in ~LH0 
order to show that  L is spanned by group-like elements we need to show that  if 

w = xluol + x2uo2 + " "  + x~,uo, (x~ E k* and u0~ is a group like element of weight 

0~ E H0) is an element in L = K~o, then uo, E L for every i = 1 , . . . , n .  In fact 

it is sufficient to show that  if w E K ~ (the fixed field by T, and v arbitrary in Ho 
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S) then uo, E K r for every i = 1, ,n. To see this recall that the extension HO . . .  

K g o / k  is abelian (H0 _> G') and therefore every group-like element uo, 0 6 Ho 

generates a subextension k(u6) /k  which is abelian. Therefore k(ue) is normalized 

by every element of S. Take an element T E S. By Lemma 2.2 and the definitions 

of KHo and S, we have that ord(ur) < pS modulo K* where pS is the number 
- -  H o  ' 

of p-th power roots of unity in k. It follows that the orders of the automorphisms 

in Gal(KHo/k)  and in Gal(k(uo)/k)  which are induced by conjugation with u~ 

are oflmpower and bounded by pS. It follows that uruou~ 1 = ~uo where ~ = ~(O) 

is a pS root of unity, and hence ~ E k*. Assume now w 6 K *Ho. Then we have 

w = u~wu~ 1 = ur(xluol + x2uo2 + " "  + x ,  uo,)u~ 1 

= zl~(O1)uo, + zK(O2)uo~ + . . .  + z,~(O,,)uo.. 

But the group-like elements {uo, }e~6c are linearly independent over k and there- 

fore ~(0i) = 1 for i = 1 , . . . ,  n. This completes the proof of the lemma. II 

Having shown that the field L is isomorphic to a twisted group algebra ksU,  

for some subgroup U in G, we proceed to show the subalgebra (L /k ,  a) generated 

by L and uo is a cyclic crossed-product over k. 

LEMMA 2.5: The subalgebra k s < U,a > is a cyclic crossed-product algebra, 

k-central, o f  index pr+~. Furthermore, L is a maximal subfield and k s < U, a >= 

(L/k ,  C = < u~L* >). 

Proof: By Lemma 2.3, conjugation of L by u ,  induces an isomorphism of 

the cyclic group < uaD~ > with Gal(L/k) .  So, all we have to show is that 

ord(u,L*)  = ord(Gal(L/k))  = p r + t  We claim ord(uak*) = pr+e (in fact this is 

also necessary). Indeed, recall that a is an element in G which generates modulo 

N the first component in the decomposition G / N  ~- Zpr+, • Zp.2 • . . .  • Zp.h. 

Furthermore, by the discussion preceding Lemma 2.2 conjugation by u~ induces 

a homomorphism from the group < a N  > onto Gal(KN/k) .  It follows that 
pr+~ 

u a 6 K~, = k, as desired. II 

As explained above we wish to factor the subalgebra D1 = k ~ < U; a > from 

kSG. This will use a refinement of the factorization lemma ([AS4], Lemma 2.3) 

which we prove below. To apply it we need two results, the first of which will be 

used for a different purpose in the last section. 

PROPOSITION 2.6: Let H be a cyclic group of order pn, p a prime, n > 1. I f  

k S H  is a field and the extension k S H / k  is abelian, then: 

(1) k _~ ~p. 
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(2) I f  p is odd, then the extension k ~ H / k  is cyclic. 

(3) I f p  = 2 and k D_ #4, then k ~ H / k  is cyclic. 

(4) I f  p = 2 and k ~_ #4, then Gal (kaH/k)  is isomorphic to Z2 x Z2 , - , .  

Proof: We have k~H = k(O) where 0 p" = fl �9 k and the extension k(O)/k has 

degree pn. It  follows tha t  x p" - fl is the minimal polynomial  of O over k. To prove 

(1) note that ,  because k(O)/k is Galois, we must have all the roots of x p" - fl in 

k(8) and so k(8) _D/~pn _D #p. But [k(#p) : k] divides p -  1. Hence [k(~p) : k] = 1. 

As we have just  seen for arbi t rary p the field k(0) contains #pn. We claim tha t  

k(O p) contains #v"" Let ca �9 k(O) be a primitive pn-th root  of one. Since ca0 is a 

root  of x p" - fl there is an automorphism a of k(O) over k such that  a(8) = caO. 

Hence a(O v) = cavOP. Because k(O)/k is assumed abelian, the extension k(OP)/k 

is Galois. Moreover, k(O p) = ka(H v) and so [k(O p) : k] = p,~-l. In particular,  

the minimal polynomial  of 0 p over k is x v"-I - fl and so k(O p) D_ #p,-~. In 

particular,  caP �9 k(0P). Hence both  8 p and a(8) p are in k(0P). It  follows tha t  

there is an element p �9 k(O v) and an integer m, 0 < m < p, such that  a(O) = pOm. 

Hence pOm = caO, so k(O v) ~ p = wO l-re. We claim m = 1. If  not, there is an 

integer t, 0 < t < p, such that  ( 1 - m ) t  = p s + l  for some integer s. Then 

k(Op ) ~ pt = catOps+l and so k(0 p) ~ catO. But cat is a primitive pn-th root  

of unity, so there is an element r �9 Gal(k(O)/k) such that  r(catO) = 0. Since 

r preserves k(OP), we obtain 0 �9 k(OV), a contradiction. Hence m = 1, so 

ca = p �9 k(OV). This proves the claim. 

We observe tha t  the claim shows that  for all i, 1 < i < n, k(0 p') _D #p,-~+,. 

We now proceed to prove parts  (2) and (3) in the case where n _< 2. If n = 1 

then both  parts  are clear. Assume n = 2. Then k " H  = k(O) where 0 p~ = ~ �9 k 

and [k(0) : k] = p2. We have seen tha t  k(O v) ~ ca, a primitive p2-root of unity. 

Moreover, k _D /~p and so w p �9 k. There is an au tomorphism cr of k(O) over 

k tha t  satisfies a(O) = ca0. It suffices to show a has order p2. If not, then 

a v = 1, so 0 = av(O) = Nk(o,)/k(w)O, where Nk(o,)/k denotes the norm map 

from k(O v) to k. Hence Nk(op)/k@) = 1. Therefore it suffices to show that  

Nk(o,)/k(ca) r 1. If  ca �9 k, then Nk(o~)/k(ca) = caP r 1. In particular,  this takes 

care of par t  (3). If  ca ~ k (so p is odd),  then ca �9 k(0 p) and [k(O v) : k] = p, so 

k(ca) = k(OP). It  follows that  the minimal polynomial  of ca over k is x v - cap and 

so Nk(o,)/k(W) = (--1)P(--W p) = W p r 1. 

We now prove parts  (2) and (3) in the case where n > 2. We proceed by 

induct ion on n. As we have seen k(OV) = k~HV is an abelian extension of k 

and so is cyclic by the induction hypothesis. We also know that  k(O v) ~ Pv" 

and k(O p~) D_ #v._~. Let ca E k(OP) be a primitive p" - th  root  of one. Just  as in 
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the previous argument,  there is an au tomorphism a of k(O) over k that  satisfies 

a(O) = wO. We would like to show a has order p'~. If not  then a p'- '  = 1, 
so 0 = aPn-~(O) = Nk(op)/k(w)O, where Nk(op)/k denotes the norm map from 

k(O p) to k. So it suffices to show Nk(op)/k(w) ~: 1. Now o(0 p) = wPO p and so 

a restricted to k(O p) generates the Galois group of k(O p) over k. In particular,  

aP"-~(O p) = OP and so Nk(op)/k(w p) = 1. Similarly, Nk(op2)/k(w p2) = 1. But  

aP"-~(O p) ~ 0 p and so 7 = Nk(o,,2)/k(wP) ~ 1. It follows tha t  7 is a primitive 

�9 -l(  )and p-th root  of one. Therefore we have "/= wPcr(w p) ,-2 ,~-2 
so ~ = wa(w).. .aP"-2-2(w)aP"-2-1(w) is a primitive p2-root of unity. Hence 

Nk(o )/k = a p ~  - 2  

: 

But a p"-2 fixes (f: I f p  : 2 this is true by assumption. I f p  is odd, (f ,~ k(O p'-~) 
O.pn - 2  and so fixes (f because n > 3. Hence Nk(op)/k(w) = (iP ~ 1. 

Finally we prove (4). Assume p = 2 and k ~ #a. If n = 1 the result is 

clear, so assume n > 2. Let i be a primitive 4-th root  of 1. Then we have seen 

tha t  k(02' '-~) ~ i and so k(O 2"-~) = k(i). It follows that  02"-~ = ci for some 

c E k and so that  0 ~" -- --c 2. Hence the element y - (1 +i )02~-2  satisfies 

y2 = 2i~)~ ~-~ = - 2 c  E k. It follows that  k(y) /k  is a quadrat ic  extension not 

equal to k(02"-'), so k(O)/k is not cyclic. But  by assumption k(O)/k is abelian 

and by par t  (3) the extension k(O)/k(i) is cyclic. It follows that  Gal(k'~H/k) is 

isomorphic to Z2 • Z2~-t. II 

LEMMA 2.7: With the notation above, the subgroup < U, a > is normal in G or 
equivalently the crossed product D1 = (L/k,  C) is normalized by any group-like 

element uz, z E G. 

Proof:  First note tha t  us normalizes Do = k~'S (S >_ G') and so it normalizes 

its center L. So the lemma will be proved if we show tha t  uzu,,u;lu[, -1 E L*. 

To see this recall tha t  L = k'~U is a cyclic extension of k of degree pr+~. It  

follows that  the group U is cyclic (otherwise U contains Zp x Zp and so the 

extension L/k  contains two different subfields of degree p over k). [Jet r be 

a generator  of U. Since the action of < uok* > on L is faithful, it follows 

tha t  u,,u,~uj 1 = ~u, where ~ = ~pr+, is a primitive pr+~ root of unity which is 

obviously in L. But more than that:  ~ is a group-like element Uh where h E G ' a n d  

ord(h) = max{1,pr+~-s}.  (Recall tha t  k contains a primitive pS root  of unity 

but  does not contain a primitive pS+l root  of unity.) 
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CLAIM: Let U,k = U z ~ a ? A z l ~ a  1 where A E G'. Then ord(A) <_ ord(h). This shows 

that A E< h > and u~ E L. 

Proof of the claim: Consider the action of uz on the field KN = kaN(N >_ 
G') by conjugation. Since conjugation by u~ generates Gal(KN/k) (paragraph 

preceding Lemma 2.2), there is a power d = d(z) of uo such that  u;duz centralizes 

KN. Consequently, k ~ < N,a-dz  > = KN(U-~dUz) is a field extension of k. 

Furthermore, it is an abelian extension and so is the subextension k(u;duz)/k. 
By Proposition 2.6, k(u;duz)/k is cyclic. 

SUBCLAIM: deg(k(u~Uz)/k) <_ max{pS,pr+~}. Indeed, we observe that the 

group G/N is mapped onto the group Gal(KN(U-~au~)/k) and therefore onto 

Gal(k(u;du~)/k). On the other hand, exp(G/N) < max{pS,p r+~} and the sub- 

claim follows. 

Finally, ( u ; d u z ) U c t ( u - ~ d U z ) - l u - a  1 : u;duAu d. Thus ord(u-~du;~uda) = ord(u~) 

<_ max{pS,p ~+~} and, since all p~ roots of unity are contained in k, ord(A) <: 

max{1,p~+~-~}. This completes the proof of the claim and also of the lemma. 
| 

As mentioned above, for the last step in the proof of Theorem 3 we need the 

following factorization lemma. 

FACTORIZATION LEMMA: Let kOG be a non-modular (that is, ord(G) C k*) 
twisted group division algebra over k. Let H be a normal subgroup of G and 

assume the subalgebra k(~H is k-central. Then kaG "~ kaH | k~E where k~E 
is a (k-central) twisted group algebra with finite group E and ~ C H2(E,  k*). 

Proof: We may assume of course that H is a proper subgroup of G. Let u8 be a 

group-like element whose weight s is in G but not in H. The group H is normal 

in G so us normalizes k~H. Since the latter is simple over k, the Skolem-Noether 

Theorem implies that there exists an element e(s) in the units of k~H such that 

e(s)-lu8 centralizes kaH. Clearly, u8 and e(s) commute in kaG, and since u8 is 

of finite order modulo k*, e(s) and therefore e(s)-lus is of finite order modulo k*. 

Let F be the group of group-like elements in kaG and consider the subgroups 

of (k~H)*F(F normalizes (kaH) *) that centralize kaH. Since k~H is k-central, 

r N kOH = k*, G/k* < (k~H)*F/(k~H)* which is a quotient of r/k* ~- G and 

moreover a quotient of G/H. Thus a maximal such �9 exists. We wish to show 

that k~G = (kaH)(k(r If not, there is an element s E G such that u8 is not 

in (kaH)k(a2). In particular, s ~ H, so repeating the argument above we get an 
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element e(s)- lu~ E (kaH)*F which centralizes k'~H and lies outside ~. Then 

we can strictly enlarge the subgroup (I) to < (I), e ( s ) - l u ,  >, contradicting the 

maximality of 4). 

In order to complete the proof of the lemma, let/~ E H2(O/k  *, k*) be the class 

determined by the following central extension: 

~ : i -~ k * -+ 4P -4 4p / k * -+ 1. 

This gives surjective homomorphisms 

TI: k ~ ( ~ / k  *) ~ k((~) and 1 | ~: (k"H)  | k~('~/k *) '~ (k'~H)k(a2) = k"G. 

Because O/k* is the quotient of G/H,  a dimension argument shows that  (I) -~ 

G / H  and 1 | 7? is an isomorphism. This completes the proof of the lemma. II 

We now complete the proof of Theorem 3: 

By Lemma 2.7 the subgroup < U,a > is normal in G and by Lemma 2.5 

the twisted group algebra k ~ < U,a > = ( L / k , C  = <  u,,L* >) is k-central. 

The factorization lemma then implies that there exists a finite group E and 

E H ~ ( E , k  *) such that k'~G '~ k ~ < U,a > | It remains to show that E 

is abelian and then, by the proof of (IAS4], Theorem 1.1), k~E is a product of 

symbol algebras. Assume the converse and let E'  ~: {1} be the commutator. By 

Theorem 1, E '  is cyclic. Moreover, the algebra k~E ' (as well as k~G ') is a non- 

trivial cyclotomic p-extension of k. It follows that the subalgebra k'*G' | k BE' 

is commutative and hence a field. This is of course impossible, since it contains 

a finite non-cyclic group of units. II 

We now want to exhibit a twisted group division algebra D over a field k, 

where exp(D) : pr, r > 2 but k contains no primitive pr roots of unity. Let p be 

an odd prime and assume k contains a primitive pS, s _> 1 root of unity but not a 

primitive pS+L root. Consider the polynomial X pr - a, where a E k* and r > s. 

Assume it is irreducible over k and let x be a root. The field extension K = k(x) 

may be abelian and, if it is, it must be cyclic. Assuming that this is the case we 

denote by H the Galois group and by a a generator. Since K / k  is cyclic, it follows 

b pr k*. (using a theorem of Schinzel, see IS, Theorem 2]) that a p" = for some b E 

So if we take the pr+S roots of this equality we get x = a 1/pr = ~b 1/p', where 

is a pr+~ root of unity. We claim that ~ is a primitive pr+8 root of unity. To see 

this we raise the above equality to the pS power and get x p" = ~P* b. Now if ~ is 

a pr+S-1 root of unity, then (P~ is a p~-i root and the extension k(x p') = k(~ p') 

is cyclotomic over k and of dimension _< p~-1-8. But d i m k ( x ) / k ( x  p~ < pS, 
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so we get d i m k ( x ) / k  <_ p~-l. This contradicts our original assumption on the 

polynomial X pr - a. Having shown that ( is a primitive pr+S root of unity, we 

have that ~P~ is a primitive pr root of unity and from the equality above it follows 

that modulo k* all the p~ roots of unity are powers of x. Let A = (K /k ,  or) be the 

pr k*. crossed-product algebra where the 2-cocycle is given by u ,  = c E From the 

discussion above it is clear now that the group G = < x, uo > / k *  is of order p2~ 

and that A has a projective basis over k. Note that the group G is not abelian. 

One can easily construct such crossed products A which are division algebras. It 

should be emphasized that A is not (in general) a product of symbol algebras. 

Indeed, choosing a suitable field k and an element c E k* we can construct A as 

above and of exponent _> p~+l. Since k contains no primitive pS+l root of unity 

A is not (Brauer equivalent to) a product of symbol algebras. 

3. S t r u c t u r e  o f  t h e  a lgeb ra ,  case II  

In this section we analyze the twisted group algebra D = kC~G where G is a 2- 

group, and x/-L~ ~ k. By Theorem 1, G'is cyclic and hence the subalgebra k'~G ' 

is a 2-cyclotomic extension of k. We assume G' is not trivial, for then G is abelian 

and the result follows from Theorem 1.1 [AS4]. Let ord(G') = 2 r~ < ord(G) = 2n. 

Following the argument in the previous section we let N be a maximal subgroup 

of G that contains G' and the subalgebra KN =k '~N is a 2-cyclotomic extension 

of k. Assume ord(N) = 2 r+l,  r >_ 0. Note that in this case the group N may be 

cyclic (in which case we may have a group-like element ue where ~ is a generator 
2r§ 

of N,  that satisfies u e -- - 1 )  or non-cyclic (e.g. N - -<  z > x < w > and 

u~2 = - 1  and uw2 = 2, say over the field Q). In any case, Gal(KN/k)  ~ Z2~ • Z2, 

which is non-cyclic unless r = 0. We first show that r = 0 when k has positive 

characteristic. 

PROPOSITION 3.1: I l k  has positive characteristic, then ord(N) _< 2. 

Proof: First note that in positive characteristic any 2-cyclotomic extension is 

necessarily cyclic: If w is a primitive 2' root of unity then the Galois group of 

k(w) over k imbeds in the Galois group of F(w) over F,  where F is the prime 

field of k. Now assume ord(N) = 2 n. Because the k a N / k  is cyclic, the group N 

must also be cyclic. But then by Proposition 2.6, since k does not contain vr :~ ,  

the only case in which k a N / k  is cylic is where ord(N) <_ 2. | 

As in the previous section, conjugation by ug, g E G, induces a surjective 

homomorphism ~?: G / N  ~ Gal(KN/k) .  Let G / N  ~- Z2s~ • Z2,~ • . . .  x Z2o,, 

--< r t ,  v2 , . . . ,  ~ ,  >, ~'i E G. It follows that there are two components (one of 
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which may be trivial), say Z2,~ x Z2.2, such that  ~(Z2., x Z2,~) = Gal(Ktc/k). 

(Of course it follows from the previousproposition that in positive characteristic 

only one component is needed.) We may assume that sl _> r and s2 _> 1 and 

after remembering that 

G / N ' ~  Z2~+, x Z2~+t • Z2,, x . . .  x Z2.,, = <  a l , a 2 , 7 1 , . . . , T m  >, 

a , , T j e G ,  m > _ O , e , f > _ O , s , >  l. 

PROPOSITION 3.2: e , f  <_ 1 and si = 1 [ori = 1 , . . . ,m .  

Proo~ Assume first e or f is _> 2. Then there is an element ux, x E G whose 

order modulo KN is 4 and it centralizes KN, contradicting Theorem 2.1 (since 

r k). The same argument shows that s, <_ 1 if u.r, centralizes Kjv. So let us 

assume that u~, acts non-trivially on KN. Since the map r/: "G/N -+ Gal(KN/k) 

is surjective, there is an element y = y(i) E G such that ~ E Z2~+~ x Z2~+f and 

such that  u~lu.r~ centralizes KN. Again, by Theorem 2.1, u~lu~, is of order at 

most 2 modulo KN and therefore ord(u~,) <__ 2. The proposition is now proved. 

| 

In fact we can obtain more from this argument: If ux, acts non-trivially on KN 

then the element uv, defined above, is also of order 2 modulo KN (ord(u~) > 2 

modulo KN would imply ord(u~-lu.r,) > 2 modulo KN). This implies that either 

e or f is 0, for if e = f -- 1, the element uy would centralize KN. This proves (i) 

and (ii) and consequently (iii) of the following lemma. 

LEMMA 3.3: Assume u-T~, some i, does not centralize KN. Then: 

(i) Either e or f is O. In particular, 2 r+l _< ord(Z2r+, x Zv+s ) _< 2 ~+2. 

(ii) If  uv, y E G, is a group-like element such that ~ E Z2~+, x Zv+s and u~lu.r~ 

centralizes KN, then u v is of order 2 modulo K~. 

(iii) There are elements 71,72,- . - ,7 ,n such that 

GIN ~ Z2r+, x Z21+1 x Z2, t  x . . .  x Z2,m = <  01,0"2, ' ) '1 , .  ' ' , ~ m  > 

and such that for all i, u.r. centralizes KN. | 

Denote by F the group of group-like elements in kaG. Using Lemma 3.3 we 

may assume that  G / N  decomposes as in (iii). We consider two cases: 

CASE (1): ord(Z2r+r • Z21+.') _< 2 r+2, 
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CASE (2): ord(Z2r+, • Z2,+f ) = 2 r+3. 

Note that  Case (1) includes tile case of positive characteristic and in that  case 

r + e = 0 .  

CASE (1): Consider the division algebra Do = k s < N, 7 i , - . - ,  7m >. As in sec- 

tion 2, conjugation by elements of F induces an action of G~ < N, 71, �9 . . ,  ")'m >'~ 

Z2-+, x Z21w on L = Z(Do). Furthermore, L c/<N,'Y' ..... "~'> = k since k -- 

Z(kC'G). But, by construction, KN C_ L (the elements uv,, i = 1 , . . . ,  m centralize 

KN) and so dim(L/k)  > 2 TM. We claim dim(L/k)  = o r d ( G / <  N, 71 , . . . ,  7m >). 

If not, there is an element z E G, z not in < N, 71,. .- , 'Ym >, such that  uz cen- 

tralizes L and its order modulo D~ is 2. Applying the argument of Lemma 2.3 we. 

obtain a division algebra D1 -- k s < N , ' h , . . .  ,Tin, z > with center L1, of dimen- 

rG/<Nm ..... "~"~> = k. But this is impos- sion at least 2 r+2 over k and such that  ~1 

sible since by the assumption of Case (1), o r d ( G / <  N , ' h , . . . ,  7,~, z >) _< 2 ~+1. 

This proves the claim. 

Following the steps as in the previous section we consider the subalgebra 

L(u,,~, u,,2) <_ kC'G. By what we have just done, 

Gat(L/k) = G~ < N, 71,-- - ,  7m > 

and L(ua,, u,,2) is isomorphic to a crossed-product algebra (L/k,  Gal(L/k)).  In 

particular, in the case of positive characteristic we see that  L/k  is a cyclic 

extension of degree at most 4. 

We want to apply the factorization lemma from section 2 to factor the algebra 

L(u,,~, u,~) off from k'~G. We therefore need to show two things: 

(i) The field generated by L is a twisted group algebra k'~U for some subgroup 

U of G. 

(ii) The subgroup < U, a t ,  a2 > is normal in G. 

It  will then follow (see the argument at the end of Theorem 3) that  kC'G ..2_ 

k ~" < U, al, a2 > (~k k~(r where r  is a finite abelian group and kt~(r *) 

is a product of quaternion algebras. 

In the present situation (ii) follows at once because G' _< N < L ' .  Let us show 

(i). The argument is the same as in Lemma 2.4. Indeed, we build a maximal 

field of the form KHo--- k'~Ho where N <_ Ho _< < N , 71 , . . .  ,7,~ > and show that  

K ~ ,  the invariant subfield of KHo under the action of 7,, is spanned by group-like 

elements. For this (as in Section 2) it is sufficient to show that  for every z E H0, 

u,~,u,u~. 1 = ,ku, where ,k E k*. To see this we consider the field extension 

k(u~)/k. Clearly it is abelian, since Kgo/k  is abelian. Furthermore, k(u,)  is 

normalized by the action of G (which is induced by conjugation with group-like 
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elements).  Next,  note tha t  exp(<  N , ' h  . . . . .  "),,~ > /Ho) = 2 and so every uv, 

induces an au tomorph i sm of k(uz) of order at  most  2. Now "hz~/-lz-1 E G' and 

so u.y, uzu~, 1 = ~u~, where A E K c ,  C_ Kiv. But  u.~, centralizes KN and u.~, 

induces an au tomorph i sm of k(uz) of order at  most  2, so )~ C { + 1 , - 1 }  C k*. 

The  proof  now proceeds exact ly  as in section 2 and so we obta in  Theorem 4 in 

Case (1). Note that ,  in part icular ,  we have seen tha t  this case includes the case of 

posit ive characteris t ic  and tha t  in positive characterist ic L/k  is a cyclic extension 

of degree at  most  4. But in fact we can now see tha t  degree 4 cannot  occur in 

posit ive characterist ic:  By the a rgument  above L is a twisted group algebra k'~U. 

Since L / k  is cyclic, the group U must  be cyclic and so L = k(u), where u 4 E k. 

But  since k does not contain v /Z]  -, this is impossible by Proposi t ion 2.6. We 

therefore have the full pa r t  one of the theorem. 

We consider now Case (2), t ha t  is ord(Z2~+, x Z21+f ) = 2 ~+3, so e = f = 1. 

We let Do = k s < N , ' h , . . .  ,~/,, > and L = Z(Do). Again, by L e m m a  3.3, we 

have t ha t  KN C_ L and, since LZ2 ~§ • = kl we have tha t  2 ~+1 _< d imk(L)  _< 

2 r+3. Arguing as in Case (1) one shows tha t  diml,(L) ~ 2 r+~ and if d imk(L)  = 

2 r+3 then the subalgebra  L(u~,~,u~,,) c_ kC~G gives a crossed-product  a lgebra 

(L/k,  Gal(L/k)) with Gal(L/k) ~ Z2~+~ x Z4 and tha t  this algebra can be factored 

from k'~G. Hence we have Theorem 4 in this case, if we can show tha t  r = 0. We 

will do so after  we consider the other  cases. 

Now assume d imk(L)  = 2 r+l  and hence L = KN. Consider the field L(u-r, o ) /k ,  

some io = 1 , . . . , m .  Clearly, the subgroup S = <  ~1,a2 > ~  Z2~+~ x Z4 of G / N  
acts on L(u.~,o)/k. Note tha t  dimk(L(U~.o) ) = 2 ~+2. Assume L(u.y,o)S = k. 
Then  we can multiply, if necessary, each u.tj, j r i by a group-like element uw, 

w = w(j) c S and get group-like elements u , = u,~(j)u.~i, j = 1 . . . .  , m t ha t  " / j  

centralize L(u.~, ~ ). I t  follows tha t  

i i 

L' = Z(D'o) = Z(k '~ < N , ? I , . . .  ,"/m >))  _D L(U~,o) 

and therefore dimk(L') > dimk(L(u.~,o) ) = 2 r+2. Then  just  as above d imk(L ' )  

must  equal 2 r+3 and the algebra L~(u~,,,uo2) is a crossed-product  a lgebra  

(L' ,Gal(L' ,k))  with G a l ( U , k )  ~ Z2~+1 • Z4 tha t  can be factored from k~G. 

Again we need to show r = 0 and will do so after we consider the next  case. 

Finally, we consider the case where L(u~, o)s  ~ k. Then  (L(u.r, o )s  : k) _> 

2. Recall t ha t  L s = k and (L(u~,o) : L) = 2. Consider the maps  S r 

Gal(L(u.~,o)/k ) ~'~ Gal(L/k). We know tha t  r is not surjective onto 

Gal(L(u~,  o ) /k)  but  its composi t ion with v is surjective onto Gal(L/k). It  follows 
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that  im(r is mapped isomorphically onto Gal(L/k) by u and so 

ker(S --+ Gal(L(u.r,o)/k ) = ker(S ~ Gal(L/k)).  

Let us be a group-like element, where x is in S but not in N. Furthermore, assume 

that  us centralizes L = KN (such an element does exist since ord(S/N) -= 2 r+3 

and dimk(L) = 2r+1). The equality of the kernels above says that  us and u.r, ~ 

commute.  Repeating this argument for all "h, we see that  we can assume that  

us commutes with ux, , i  = 1 , . . . ,  m. Consider the twisted group algebra D1 -- 

k ~ < N, 71, . . . , 'Ym,X >. By the discussion above k ~ < N , x  > is contained in 

L1, the center of D1, and therefore dimk(L1) > dimk(k a < N , x  >) _ 2 ~+2. This 

case then proceeds just as the two previous ones. 

At this point we have shown that  if the characteristic of k is zero, then either 

D is a tensor product of quaternion algebras or D ~ D1 | "'" | Dn where 

Di, i = 1 , . . . ,  n - 1 are quaternion algebras and D,~ is isomorphic to a crossed 

product ( K / k , H  = Gal(K/k))  where H ~ Z2r • Z2, and r > 1 and 1 < s < 2. 

We claim in fact H ~ Z2r • Z24 with r _> 2 does not occur. This will finish 

the theorem. To see this recall that  we have shown that  the field extension K 

is a twisted group algebra K = k~U. It  follows that  U must be a cyclic group: 

If not, U contains Z2 • Z2 x Z2 or Z2 x Z4. If U contains Z2 • Z2 • Z2, then 

K will contain three quadratic extensions no one of which is contained in the 

field generated by the others. It follows that  the Galois group of K / k  maps onto 

Z2 • Z2 • Z2, a contradiction. If U contains Z2 • Z4, then K contains a subfield 

F -- k~(Z4) which, by Proposition 2.6, will be Galois with group Z2 x Z2. But 

K will also contain k~(Z2) from the other factor of U and this quadratic will 

not be a subfield of F.  Again it follows that  the Galois group of K / k  :naps o n t o  

Z2 • Z2 • Z2, a contradiction. So U must be cyclic. But then, by Proposition 

2.6, we know H is of the form Z2~ • Z2. This proves the claim. 

This finishes the proof of Theorem 4. | 
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